Log in

Impurity effects on phase change in Lennard-Jones atomic clusters

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

In this work, we would like to explore the possibility of studying phase change behaviour in pure Lennard-Jones clusters as well as the effect of introducing a heteroatom. The system studied are \({\textrm{Ar}}_{10}\), \({\textrm{Xe}}_{10}\) and \({\textrm{Ar}}_{10-1}{\textrm{Xe}}_1\) as well as \({\textrm{Ar}}_{10-9}{\textrm{Xe}}_{9}\). The phase change is followed by the temperature variation in classical configuration heat capacity. As the heat capacity is calculated by evaluating the variance in the energy of the isomers possible, an important aspect is to sample the Lennard-Jones surface effectively and pick out as many isomers which are possible for this system. The sampling at various temperatures has been done using the replica exchange Monte Carlo or Parallel tempering procedure. The main focus of the present work is to see how the phase change behaviour is affected on going from the pure Lennard-Jones systems to the once possessing dopants. To further aid in the understanding bond length fluctuation parameter has also been calculated for all the systems with changing temperature along with the classical configuration.

Graphical abstract

Synopsis: The phase change behavior of pure Lennard-Jones clusters and the effect of introducing a heteroatom was studied using replica exchange Monte Carlo or parallel tempering techniques and examining the classical configuration heat capacity and bond length fluctuation parameter. The systems studied were Ar10 , Xe10 and Ar10−1 Xe1 as well as Ar10−9 Xe9.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Ayotte P, Nielsen S B, Weddle G H, Johnson M A and Xantheas S S 1999 Spectroscopic observation of ion-induced water dimer dissociation in the \({{\rm X}}^{-}.(H_2O)_2\) (\({{\rm X = F, Cl, Br, I}}\)) clusters J. Phys. Chem. A 103 10665

  2. Ghorai S and Chaudhury P 2018 Predicting stability limits for pure and doped dicationic noble gas clusters undergoing coulomb explosion: A parallel tempering based study J. Comput. Chem. 39 827

    Article  CAS  PubMed  Google Scholar 

  3. Wales D J 1990 Transition states for ar55 Chem. Phys. Lett. 166 419

    Article  CAS  Google Scholar 

  4. Wales D J and Doye J P K 2003 Stationary points and dynamics in high-dimensional systems J. Chem. Phys. 119 12409

    Article  CAS  Google Scholar 

  5. Wales D J and Bogdan T V 2006 Potential energy and free energy landscapes J. Phys. Chem. B 110 20765

    Article  CAS  PubMed  Google Scholar 

  6. Daven D M, Tit N, Morris J R and Ho K M 1996 Structural optimization of lennard-jones clusters by a genetic algorithm Chem. Phys. Lett. 256 195

    Article  Google Scholar 

  7. Pullan W J 1997 Energy minimization of mixed argon-xenon microclusters using a genetic algorithm J. Comput. Chem. 18 1096

    Article  CAS  Google Scholar 

  8. Pullan W J 1997 Structure prediction of benzene clusters using a genetic algorithm J. Chem. Inf. Comp. Sci. 37 1189

    Article  CAS  Google Scholar 

  9. Pullan W J 1997 Genetic operators for the atomic cluster problem Comp. Phys. Commun. 107 137

    Article  CAS  Google Scholar 

  10. Ghorai S, Naskar P and Chaudhury P 2020 An investigation on the structure, spectroscopy, and thermodynamic aspects of clusters: A combined parallel tempering and dft based study Int. J. Quant. Chem. 120 26270

    Article  Google Scholar 

  11. Naskar P and Chaudhury P 2016 An investigation on the structure, spectroscopy and thermodynamic aspects of \(\rm Br_2^{(-)}(H_2O)_n\) clusters using a conjunction of stochastic and quantum chemical methods Phys. Chem. Chem. Phys. 18 16245

    Article  CAS  PubMed  Google Scholar 

  12. Naskar P, Roy R, Talukder S and Chaudhury P 2018 Structural, spectroscopic and thermodynamic aspects of azide-water clusters: an approach using a conjugated prescription of stochastic and quantum chemical methods Mol. Phys. 116 2172

    Article  CAS  Google Scholar 

  13. Pathak A K, Mukherjee T and Maity D K 2010 Global minimum-energy structure and spectroscopic properties of \({{\rm I}}_2^-.nH_2O\) clusters: A monte carlo simulated annealing study ChemPhysChem 11 220

  14. Weber J M, Kelley J A, Robertson W H and Johnson M A 2001 Hydration of a structured excess charge distribution: Infrared spectroscopy of the \({{\rm O}}_2^-.(H_2O)_n,(1 \le n \le 5)\) clusters J. Chem. Phys. 114 2698

  15. Ayotte P, Weddle G H and Johnson M A 1999 An infrared study of the competition between hydrogen-bond networking and ionic solvation: Halide-dependent distortions of the water trimer in the \({{\rm X}}^-.(H_2O)_3 , (x=Cl, Br,I)\) systems J. Chem. Phys. 110 7129

  16. Wales D J and Hodges M P 1998 Global minima of water clusters \(\rm (H_2O)_n, n\le 21\), described by an empirical potential Chem. Phys. Lett. 286 65

    Article  CAS  Google Scholar 

  17. Pei S T, Jiang S, Liu Y R, Huang T, Xu K M, Wen H, Zhu Y P and Huang W 2015 Properties of ammonium ion-water clusters: Analyses of structure evolution, noncovalent interactions, and temperature and humidity effects J. Phys. Chem. A 119 3035

    Article  CAS  PubMed  Google Scholar 

  18. Eaton J G, Arnold S T and Bowen K H 1990 The negative ion photoelectron (photodetachment) spectra of \({{\rm NO}}^-(H_2O)_{n=1,2}\)Int. J. Mass Spectro. Ion Proc. 102 303

    Article  CAS  Google Scholar 

  19. Asmis K R, Santambrogio G, Zhou J, Garand E, Headrick J, Goebbert D and Neumark D M 2007 Vibrational spectroscopy of hydrated electron clusters\(\rm (H_2O)^-_{15-50}\) via infrared multiple photon dissociation J. Chem. Phys. 126 191105

  20. Herburger A, Barwa E, Ončák M, Heller J, van der Linde C, Neumark, D M and Beyer M K 2019 Probing the structural evolution of the hydrated electron in water cluster anions \(({{\rm H}}_2O )_n^-\), \(\rm n \le 200\), by electronic absorption spectroscopy J. Am. Chem. Soc. 141 18000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Goebbert D J, Garand E, Wende T, Bergmann R, Meijer G, Asmis K R and Neumark D M 2009 Infrared spectroscopy of the microhydrated nitrate ions \(\rm NO_3^-(H_2O)_{1-6}\)J. Phys. Chem. A 113 7584

    Article  CAS  PubMed  Google Scholar 

  22. Wen H, Hou G L, Kathmann S M, Valiev M and Wang X B 2013 Communication: Solute anisotropy effects in hydrated anion and neutral clusters J. Chem. Phys. 138 031101

    Article  PubMed  Google Scholar 

  23. Tharrington A N and Jordan K D 2003 Parallel-tempering monte carlo study of \(({{\rm H}}_2O )_{n=6-9}\)J. Phys. Chem. A 107 7380

    Article  CAS  Google Scholar 

  24. Ghorai S, Naskar P and Chaudhury P 2018 Role of the vibrational contribution in coulomb explosion of dicationic neon gas clusters: a parallel tempering based study Phys. Chem. Chem. Phys. 20 22379

    Article  CAS  PubMed  Google Scholar 

  25. Talukder S, Sen S, Neogi S G and Chaudhury P 2013 A parallel tempering based study of coulombic explosion and identification of dissociating fragments in charged noble gas clusters J. Chem. Phys. 139 164312

    Article  PubMed  Google Scholar 

  26. Gay J G and Berne B J 1982 Computer simulation of coulomb explosions in doubly charged xe microclusters Phys. Rev. Lett. 49 194

    Article  CAS  Google Scholar 

  27. Ghorai S, Naskar P and Chaudhury P 2020 Construction of elementary reaction paths of pure and mixed argon-xenon clusters : a parallel tempering based study Struct. Chem. 31 22379

    Article  Google Scholar 

  28. Sheppard D, Terrell R and Henkelman G 2008 Optimization methods for finding minimum energy paths J. Chem. Phys. 128 134106

    Article  PubMed  Google Scholar 

  29. Olsen R A, Kroes G J, Henkelman G, Arnaldsson A and Jónsson H 2004 Comparison of methods for finding saddle points without knowledge of the final states J. Chem. Phys. 121 9776

    Article  CAS  PubMed  Google Scholar 

  30. Henkelman G, Uberuaga B P and Jónsson H 2000 A climbing image nudged elastic band method for finding saddle points and minimum energy paths J. Chem. Phys. 113 9901

    Article  CAS  Google Scholar 

  31. De D S, Krummenacher M, Schaefer B and Goedecker S 2019 Finding reaction pathways with optimal atomic index map**s Phys. Rev. Lett. 123 206102

    Article  CAS  PubMed  Google Scholar 

  32. Carr J M, Trygubenko S A and Wales D J 2005 Finding pathways between distant local minima J. Chem. Phys. 122 234903

    Article  PubMed  Google Scholar 

  33. White R P, Cleary S M and Mayne H R 2005 Phase changes in lennard-jones mixed clusters with composition \({{\rm Ar}}_nXe_{6-n}\) (n=0,1,2) J. Chem. Phys. 123 094505

    Article  Google Scholar 

  34. Husic B E, Schebarchov D and Wales D J 2016 Impurity effects on solid-solid transitions in atomic clusters Nanoscale 8 18326

    CAS  PubMed  Google Scholar 

  35. Neirotti J P, Calvo F, Freeman D L and Doll J D 2000 Phase changes in 38-atom lennard-jones clusters. i. a parallel tempering study in the canonical ensemble J. Chem. Phys. 112 10340

  36. Jellinek J, Beck T L and Berry R S 1986 Solid-liquid phase changes in simulated isoenergetic ar13 J. Chem. Phys. 84 2783

    Article  CAS  Google Scholar 

  37. Amar F G and Berry R S 1986 The onset of nonrigid dynamics and the melting transition in \({{\rm Ar}}_7\)J. Chem. Phys. 85 5943

    Article  CAS  Google Scholar 

  38. Frantz D D 1995 Magic numbers for classical lennard-jones cluster heat capacities J. Chem. Phys. 102 3747

    Article  CAS  Google Scholar 

  39. Calvo F, Neirotti J P, Freeman D L and Doll J D 2000 Phase changes in 38-atom lennard-jones clusters. ii. a parallel tempering study of equilibrium and dynamic properties in the molecular dynamics and microcanonical ensembles J. Chem. Phys. 112 10350

  40. Tekin A and Yurtsever M 2002 Molecular dynamics simulation of phase transitions in binary LJ clusters Turk. J. Chem. 26 627

    CAS  Google Scholar 

  41. Pahl E, Calvo F, Koči L and Schwerdtfeger P 2008 Accurate melting temperatures for neon and argon from ab initio monte carlo simulations Angew. Chemie Int. Edit. 47 8207

    Article  CAS  Google Scholar 

  42. Calvo F and Parneix P 2009 Phase space theory of evaporation in neon clusters: The role of quantum effects J. Phys. Chem. A 113 14352

    Article  CAS  PubMed  Google Scholar 

  43. Polyakov D N, Shumova V V and Vasilyak L M 2018 Phase transitions and transformation of dust structures in neon dc discharge at cryogenic temperature J. Phys. Conf. Series 1058 012029

    Article  Google Scholar 

  44. Swendsen R H and Wang J S 1986 Replica monte carlo simulation of spin-glasses Phys. Rev. Lett. 57 2607

    Article  CAS  PubMed  Google Scholar 

  45. Hansmann U H E 1997 Parallel tempering algorithm for conformational studies of biological molecules Chem. Phys. Lett. 281 140

    Article  CAS  Google Scholar 

  46. Sugita Y and Okamoto Y 1999 Replica-exchange molecular dynamics method for protein folding Chem. Phys. Lett. 314 141

    Article  CAS  Google Scholar 

  47. Sugita Y and OkamotoY 2000 Replica-exchange multicanonical algorithm and multicanonical replica-exchange method for simulating systems with rough energy landscape Chem. Phys. Lett. 329 261

  48. Kofke D A 2004 Comment on “the incomplete beta function law for parallel tempering sampling of classical canonical systems” J. Chem. Phys. 121 1167

    Article  CAS  PubMed  Google Scholar 

  49. Earl D J and Deem M W 2005 Parallel tempering: Theory, applications, and new perspectives Phys. Chem. Chem. Phys. 7 3910

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

SG thanks University of Calcutta, Kolkata, India. MN is thankful to SERB, India for National Post-Doctoral Fellowship [Ref. No: PDF/2022/001807].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pinaki Chaudhury.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Dedicated to Professor S. P. Bhattacharyya on the occasion of his 75th birthday.

Special Issue on Interplay of Structure and Dynamics in Reaction Pathways, Chemical Reactivity and Biological Systems

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghorai, S., Nandi, M. & Chaudhury, P. Impurity effects on phase change in Lennard-Jones atomic clusters. J Chem Sci 135, 35 (2023). https://doi.org/10.1007/s12039-023-02156-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-023-02156-3

Keywords

Navigation