Log in

BSinGe4−n+ (n = 0−2): prospective systems containing planar tetracoordinate boron (ptB)

  • REGULAR ARTICLE
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

The potential energy surface (PES) has been explored for BSinGe4−n+ (n = 0−2) systems using density functional theory (DFT). The global minima (1a, 1b, and 1c) of the considered systems contain a planar tetracoordinate boron (ptB) center. The neutral states of the systems do not have a ptB in the global minimum structures. The designed BGe4+, BSiGe3+, and BSi2Ge2+ systems have 18 valence electrons. The CCSD(T)/aug-cc-pVTZ level of theory has been applied to compute the relative energies of the low-lying isomers with respect to the global minima. The dynamical stability of BSinGe4−n+ (n = 0−2) systems is confirmed from the atom-centered density matrix propagation (ADMP) simulation over 20 ps of time at temperatures of 300 K and 500 K. The natural charge computations show that the charges on the ptB are highly negative, indicating strong σ-acceptance from the peripheral atoms. The 1a, 1b, and 1c structures of BGe4+, BSiGe3+, and BSi2Ge2+ systems, respectively, have σ/π-dual aromaticity as predicted from the nucleus-independent chemical shift (NICS) values.

Graphical abstract

Density functional theory (DFT) based computation predicts the presence of a planar tetracoordinate boron (ptB) in the global minimum energy structures of BSinGe4−n+ (n = 0−2) systems. The systems are kinetically stable and show σ- and π- electronic delocalization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. van’t Hoff J H 1874 A suggestion looking to the extension into space of the structural formulas at present used in chemistry, and a note upon the relation between the optical activity and the chemical constitution of organic compounds Arch. Neerl. Sci. Exactes Nat. 9 445

    Google Scholar 

  2. Le-Bel J A 1874 On the relations which exist between the atomic formulas of organic compounds and the rotatory power of their solutions Bull. Soc. Chim. Fr. 22 337

    Google Scholar 

  3. Monkhorst H J 1968 Activation energy for interconversion of enantiomers containing an asymmetric carbon atom without breaking bonds Chem. Commun. 11 1111

    Google Scholar 

  4. Hoffmann R, Alder R W and Wilcox C F 1970 Planar tetracoordinate carbon J. Am. Chem. Soc. 92 4992

    Article  CAS  Google Scholar 

  5. Collins J B, Dill J D, Jemmis E D, Apeloig Y, von Ragué Schleyer P, Seeger R and Pople J A 1976 Stabilization of planar tetracoordinate carbon J. Am. Chem. Soc. 98 5419

    Article  CAS  Google Scholar 

  6. Merino G, Méndez-Rojas M A, Beltrán H I, Corminboeuf C, Heine T and Vela A 2004 Theoretical analysis of the smallest carbon cluster containing a planar tetracoordinate carbon J. Am. Chem. Soc. 126 16160

    Article  CAS  Google Scholar 

  7. Yang L M, Ganz E, Chen Z, Wang Z X and von Ragué Schleyer P 2015 Four decades of the chemistry of planar hypercoordinate compounds Angew. Chem. Int. Ed. 54 9468

    Article  CAS  Google Scholar 

  8. Cui Z H, Contreras M, Ding Y H and Merino G 2011 Planar tetracoordinate carbon versus planar tetracoordinate boron: The case of CB4 and its cation J. Am. Chem. Soc. 133 13228

    Article  CAS  Google Scholar 

  9. Cui Z H, Ding Y H, Cabellos J L, Osorio E, Islas R, Restrepo A and Merino G 2015 Planar tetracoordinate carbons with a double bond in CAl3E clusters Phys. Chem. Chem. Phys. 17 8769

    Article  CAS  Google Scholar 

  10. Das P, Pan S and Chattaraj P K 2023 Planar hypercoordinate carbon In: Atomic Clusters with Unusual Structure, Bonding and Reactivity (Elsevier) p. 357

  11. Das P and Chattaraj P K 2021 In silico studies on selected neutral molecules, CGa2Ge2, CAlGaGe2, and CSiGa2Ge containing planar tetracoordinate carbon Atoms 9 65

    Article  CAS  Google Scholar 

  12. Das P and Chattaraj P K 2022 CSiGaAl2−/0 and CGeGaAl2−/0 having planar tetracoordinate carbon atoms in their global minimum energy structures J. Comput. Chem. 43 894

    Article  CAS  Google Scholar 

  13. Das P, Khatun M, Anoop A and Chattaraj P K 2022 CSinGe4−n2+ (n = 1–3): prospective systems containing planar tetracoordinate carbon (ptC) Phys. Chem. Chem. Phys. 24 16701

    Article  CAS  Google Scholar 

  14. Li X, Wang L S, Boldyrev A I and Simons J 1999 Tetracoordinated planar carbon in the Al4C anion. A combined photoelectron spectroscopy and ab initio study J. Am. Chem. Soc. 121 6033

    Article  CAS  Google Scholar 

  15. Boldyrev A I and Simons J 1998 Tetracoordinated planar carbon in pentaatomic molecules J. Am. Chem. Soc. 120 7967

    Article  CAS  Google Scholar 

  16. Röttger D and Erker G 1997 Compounds containing planar-tetracoordinate carbon Angew. Chem. Int. Ed. Engl. 36 812

    Article  Google Scholar 

  17. Erker G 1992 Planar-tetracoordinate carbon: Making stable anti-van’t Hoff/Le Bel compounds Comment. Inorg. Chem. 13 111

    Article  CAS  Google Scholar 

  18. Keese R 2006 Carbon flatland: Planar tetracoordinate carbon and fenestranes Chem. Rev. 106 4787

    Article  CAS  Google Scholar 

  19. Xu J, Zhang X, Yu S, Ding Y H and Bowen K H 2017 Identifying the hydrogenated planar tetracoordinate carbon: A combined experimental and theoretical study of CAl4H and CAl4H J. Phys. Chem. Lett. 8 2263

    Article  CAS  Google Scholar 

  20. Li X, Zhang H F, Wang L S, Geske G and Boldyrev A 2000 Pentaatomic tetracoordinate planar carbon, [CAl4]2−: A new structural unit and its salt complexes Angew. Chem. Int. Ed. 39 3630

    Article  CAS  Google Scholar 

  21. Pei Y, An W, Ito K, von Ragué Schleyer P and Zeng X C 2008 Planar pentacoordinate carbon in CAl5+: A global minimum J. Am. Chem. Soc. 130 10394

    Article  CAS  Google Scholar 

  22. Vassilev-Galindo V, Pan S, Donald J K and Merino G 2018 Planar pentacoordinate carbons Nat. Chem. Rev. 2 0114

    Article  CAS  Google Scholar 

  23. Pan S, Cabellos J L, Orozco M, Merino G, Zhao L and Chattaraj P K 2018 Planar pentacoordinate carbon in CGa5+ derivatives Phys. Chem. Chem. Phys. 20 12350

    Article  CAS  Google Scholar 

  24. Exner K and von Ragué Schleyer P 2000 Planar hexacoordinate carbon: A viable possibility Science 290 1937

    Article  CAS  Google Scholar 

  25. Averkiev B B, Zubarev D Y, Wang L M, Huang W, Wang L S and Boldyrev A I 2008 Carbon avoids hypercoordination in CB6, CB62−, and C2B5 planar carbon-boron clusters J. Am. Chem. Soc. 130 9248

    Article  CAS  Google Scholar 

  26. Wu Y B, Duan Y, Lu G, Lu H G, Yang P, Schleyer P and v R, Merino G, Islas R and Wang Z X, 2012 D3h CN3Be3+ and CO3Li3+: Viable planar hexacoordinate carbon prototypes Phys. Chem. Chem. Phys. 14 14760

    Article  CAS  Google Scholar 

  27. Parra L L, Diego L, Yañez O, Inostroza D, Barroso J, Vásquez-Espinal A, et al. 2021 Planar hexacoordinate carbons: Half covalent, half ionic Angew. Chem. Int. Ed. 60 8700

    Article  Google Scholar 

  28. Minyaev R M, Gribanova T N, Starikov A G and Minkin V I 2002 Heptacoordinated carbon and nitrogen in a planar boron ring Dokl. Chem. 382 41

    Article  CAS  Google Scholar 

  29. Wang L M, Huang W, Averkiev B B, Boldyrev A I and Wang L S 2007 CB7: Experimental and theoretical evidence against hypercoordinate planar carbon Angew. Chem. Int. Ed. 46 4550

    Article  CAS  Google Scholar 

  30. Castillo-Toraya G, Orozco-Ic M, Dzib E, Zarate X, Ortíz-Chi F, Cui Z, et al. 2021 Planar tetracoordinate fluorine atoms Chem. Sci. 12 6699

    Article  CAS  Google Scholar 

  31. Chen C, Wang M, Feng L Y, Zhao L Q, Guo J C, Zhai H J, et al. 2022 Bare and ligand protected planar hexacoordinate silicon in SiSb3M3+ (M = Ca, Sr, Ba) clusters Chem. Sci. 13 8045

    Article  CAS  Google Scholar 

  32. Wang M, Chen C, Pan S and Cui Z 2021 Planar hexacoordinate gallium Chem. Sci. 12 15067

    Article  CAS  Google Scholar 

  33. Kalita A J, Sarmah K, Yashmin F, Borah R R, Baruah I, Deka R P and Guha A K 2022 σ-Aromaticity in planar pentacoordinate aluminium and gallium clusters Sci. Rep. 12 10041

    Article  CAS  Google Scholar 

  34. Feng W, Zhu C, Liu X, Zhang M, Geng Y, Zhao L and Su Z 2020 A BPt4S4 cluster: A planar tetracoordinate boron system with three charges all at their global energy minima New J. Chem. 44 767

    Article  CAS  Google Scholar 

  35. Li S D, Miao C Q and Ren G M 2004 D5h Cu5H5X: Pentagonal hydrocopper Cu5H5 containing pentacoordinate planar nonmetal centers (X = B, C, N, O) Eur. J. Inorg. Chem. 2004 2232

    Article  Google Scholar 

  36. Yu H L, Sang R L and Wu Y Y 2009 Structure and aromaticity of B6H5+ cation: A novel borhydride system containing planar pentacoordinated boron J. Phys. Chem. A 113 3382

    Article  CAS  Google Scholar 

  37. Khatun M, Roy S, Giri S, Ch S S R, Anoop A and Thimmakondu V S 2021 BAl4Mg−/0/+: Global minima with a planar tetracoordinate or hypercoordinate boron Atom Atoms 9 89

    Article  CAS  Google Scholar 

  38. Gribanova T N, Minyaev R M and Minkin V I 2001 Planar hexacoordinated boron in organoboron compounds: an ab initio study Mendeleev Commun. 11 169

    Article  Google Scholar 

  39. Das P, Patra S G and Chattaraj P K 2022 CB6Al0/+: Planar hexacoordinate boron (phB) in the global minimum structure Phys. Chem. Chem. Phys. 24 22634

    Article  CAS  Google Scholar 

  40. Zhai H J, Alexandrova A N, Birch K A, Boldyrev A I and Wang L S 2003 Hepta- and octacoordinate boron in molecular wheels of eight- and nine-atom boron clusters: Observation and confirmation Angew. Chem., Int. Ed. 42 6004

    Article  CAS  Google Scholar 

  41. Zhao T, Wang Q and Jena P 2016 Cluster-inspired design of high-capacity anode for Li-ion batteries ACS Energy Lett. 1 202

    Article  CAS  Google Scholar 

  42. Dai J, Wu X, Yang J and Zeng X C 2014 AlxC monolayer sheets: two-dimensional networks with planar tetracoordinate carbon and potential applications as donor material in solar cell J. Phys. Chem. Lett. 5 2058

    Article  CAS  Google Scholar 

  43. Zhang J and Dolg M 2015 ABCluster: the artificial bee colony algorithm for cluster global optimization Phys. Chem. Chem. Phys. 17 24173

    Article  CAS  Google Scholar 

  44. Zhang J and Dolg M 2016 Global optimization of clusters of rigid molecules using the artificial bee colony algorithm Phys. Chem. Chem. Phys. 18 3003

    Article  CAS  Google Scholar 

  45. Karaboga D 2005 An Idea Based on Honey Bee Swarm for Numerical Optimization, Technical Report-TR06, Erciyes University, Engineering Faculty, Computer Engineering Department

  46. Sarkar K and Bhattacharyya S P 2017 Soft Computing in Chemical and Physical Sciences: A Shift in Computing Paradigm 1st edn. (Boca Raton: CRC Press)

  47. Adamo C and Barone V 1999 Toward reliable density functional methods without adjustable parameters: The PBE0 model J. Chem. Phys. 110 6158

    Article  CAS  Google Scholar 

  48. Grimme S, Antony J, Ehrlich S and Krieg H 2010 A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu J. Chem. Phys. 132 154104

    Article  Google Scholar 

  49. Weigend F and Ahlrichs R 2005 Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy Phys. Chem. Chem. Phys. 7 3297

    Article  CAS  Google Scholar 

  50. Scuseria G E and Schaefer H F 1989 Is coupled cluster singles and doubles (CCSD) more computationally intensive than quadratic configuration interaction (QCISD) J. Chem. Phys. 90 3700

    Article  CAS  Google Scholar 

  51. Weigend F 2006 Accurate coulomb-fitting basis sets for H to Rn Phys. Chem. Chem. Phys. 8 1057

    Article  CAS  Google Scholar 

  52. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, et al. 2016 Gaussian 16, Revision B.01 (Gaussian Inc: Wallingford, CT)

  53. Schlegel H B, Millam J M, Iyengar S S, Voth G A, Daniels A D, Scuseria G E and Frisch M J 2001 Ab initio molecular dynamics: Propagating the density matrix with Gaussian orbitals J. Chem. Phys. 114 9758

    Article  CAS  Google Scholar 

  54. Iyengar S S, Schlegel H B, Millam J M, Voth G A, Scuseria G E and Frisch M J 2001 Ab initio molecular dynamics: Propagating the density matrix with Gaussian orbitals. II. Generalizations based on mass-weighting, idempotency, energy conservation and choice of initial conditions J. Chem. Phys. 115 10291

    Article  CAS  Google Scholar 

  55. Schlegel H B, Iyengar S S, Li X, Millam J M, Voth G A, Scuseria G E and Frisch M J 2002 Ab initio molecular dynamics: Propagating the density matrix with Gaussian orbitals. III. Comparison with Born-Oppenheimer dynamics J. Chem. Phys. 117 8694

    Article  CAS  Google Scholar 

  56. Das P, Saha R and Chattaraj P K 2020 Encapsulation of Mg2 inside a C60 cage forms an electride J. Comput. Chem. 41 1645

    Article  CAS  Google Scholar 

  57. Reed A E, Curtiss L A and Weinhold F 1988 Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint Chem. Rev. 88 899

    Article  CAS  Google Scholar 

  58. Møller C and Plesset M S 1934 Note on an approximation treatment for many electron systems Phys. Rev. 46 618

    Article  Google Scholar 

  59. Cremer D 2011 Møller-Plesset perturbation theory: from small molecule methods to methods for thousands of atoms Wiley Interdiscip Rev.: Comput. Mol. Sci. 1 509

    CAS  Google Scholar 

  60. Dunning T H Jr 1989 Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen J. Chem. Phys. 90 1007

  61. Kendall R A, Dunning T H Jr and Harrison R J 1992 Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions J. Chem. Phys. 96 6796

  62. Woon D E and Dunning T H Jr 1993 Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon J. Chem. Phys. 98 1358

  63. Bader R F W 1990 Atoms in Molecules. In A Quantum Theory (Oxford University Press: Oxford, UK)

  64. Lu T and Chen F 2012 Multiwfn: A multifunctional wavefunction analyzer J. Comput. Chem. 33 580

    Article  Google Scholar 

  65. Zubarev D Y and Boldyrev A I 2008 Develo** paradigms of chemical bonding: adaptive natural density partitioning Phys. Chem. Chem. Phys. 10 5207

    Article  CAS  Google Scholar 

  66. Zubarev D Y and Boldyrev A I 2008 Revealing intuitively assessable chemical bonding patterns in organic aromatic molecules via adaptive natural density partitioning J. Org. Chem. 73 9251

    Article  CAS  Google Scholar 

  67. von Ragué Schleyer P, Jiao H, Hommes N v E, Malkin V G and Malkina O L 1997 An evaluation of the aromaticity of inorganic rings: refined evidence from magnetic properties J. Am. Chem. Soc. 119 12669

  68. von Ragué Schleyer P, Maerker C, Dransfeld A, Jiao H and van Eikema Hommes N J R 1996 Nucleus-Independent chemical shifts: A simple and efficient aromaticity probe J. Am. Chem. Soc. 118 6317

  69. Krygowski T M and Cyranski M 2001 Structural aspects of aromaticity Chem. Rev. 101 1385

    Article  CAS  Google Scholar 

  70. Das P and Chattaraj P K 2020 Electride characteristics of some binuclear sandwich complexes of alkaline earth metals, M2(η5-L)2 (M = Be, Mg; L = C5H5, N5, P5, As5) J. Phys. Chem. A 124 9801

    Article  CAS  Google Scholar 

  71. Das P and Chattaraj P K 2021 Substituent effects on electride characteristics of Mg2(η5-C5H5)2: a theoretical study J. Phys. Chem. A 125 6207

    Article  CAS  Google Scholar 

Download references

Acknowledgements

PKC would like to thank DST, New Delhi, India, for the J. C. Bose National Fellowship, grant number SR/S2/JCB-09/2009. PD thanks UGC, New Delhi, India, for the Research Fellowship. A part of the computation was carried out by the resources of the Supercomputing facility at the Indian Institute of Technology Kharagpur, established under the National Supercomputing Mission (NSM), Government of India and supported by the Centre for Development of Advanced Computing (CDAC), Pune.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratim Kumar Chattaraj.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Additional information

Dedicated to Professor S. P. Bhattacharyya on the occasion of his 75th birthday

Special Issue on Interplay of Structure and Dynamics in Reaction Pathways, Chemical Reactivity and Biological Systems

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 438 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, P., Chattaraj, P.K. BSinGe4−n+ (n = 0−2): prospective systems containing planar tetracoordinate boron (ptB). J Chem Sci 135, 1 (2023). https://doi.org/10.1007/s12039-022-02121-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-022-02121-6

Keywords

Navigation