Log in

Apoptosis induced by (di-isopropyloxyphoryl-Trp)2-Lys-OCH3 in K562 and HeLa cells

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

According to the method used in our laboratory, our group synthesized (DIPP-Trp)2-Lys-OCH3. It inhibited the proliferation of K562 and HeLa cells in a dose-and time-dependent manner with an IC50 of 15.12 and 42.23 µM, respectively. (DIPP-Trp)2-Lys-OCH3 induced a dose-dependent increase of the G2/M cell population in K562 cells, and S cell population in HeLa cells; the sub-G0 population increased dramatically in both cell lines as seen by PI staining experiments using a FACS Calibur Flow cytometer (BeckmanCoulter, USA). Phosphatidylserine could significantly translocate to the surface of the membrane in (DIPP-Trp)2-Lys-OCH3-treated K562 and HeLa cells. The increase of an early apoptotic population was observed in a dose-dependent manner by both annexin-FITC and PI staining. It was concluded that (DIPP-Trp)2-Lys-OCH3 not only induced cells to enter into apoptosis, but also affected the progress of the cell cycle. It may have arrested the K562 and HeLa cells in the G2/M, S phases, respectively. The apoptotic pathway was pulsed at this point, resulting in the treated cells entering into programmed cell death. (DIPP-Trp)2-Lys-OCH3 is a potential anticancer drug that intervenes in the signalling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Apaf-1:

apoptotic protease activating factor-1

(DIPP-Trp)2-Lys-OCH3 :

(di-isopropyloxyphoryl-Trp)2-Lys-OCH3

FBS:

foetal bovine serum

IC50 :

inhibitory concentration 50%

IR%:

inhibition rate

MTT:

3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide

PI:

propidium iodide

PS:

phosphatidylserine

References

  • Bertenshaw S R, Rogers R S, Stern M K, Norman B H, Moore W M, Jerome G M, Branson L M, McDonald J F, McMahon E G and Palomo M A 1993 Phosphorus-containing inhibitors of endothelin converting enzyme: effects of the electronic nature of phosphorus on inhibitor potency; J. Med. Chem. 36 173–176

    Article  CAS  Google Scholar 

  • Cai Y M, Gao X, Huang X T, Wang T J and Zhao Y F 2006 Synthesis, spectral characterization and biological activities of phosphoryl amino acid esters; Chinese J. Org. Chem. 26 1677–1681

    CAS  Google Scholar 

  • Cheng C M, Liu X H, Li Y M, Ma Y, Tan B, Wan R and Zhao Y F 2004 N-phosphoryl amino acids and biomolecular origins; Origins Life Evol. Biosphere 34 455–464

    Article  CAS  Google Scholar 

  • Hanahan D and Weinberg R A 2000 The hallmarks of cancer; Cell 100 57–70

    Article  CAS  Google Scholar 

  • Jacobson M D, Weil M and Raff M C 1997 Programmed cell death in animal development; Cell 88 347–354

    Article  CAS  Google Scholar 

  • Ji G J, Xue C B, Zeng J N, Li L P, Chai W G and Zhao Y F 1988 Synthesis of N-(diisoproxy phosphoryl) amino acids and peptide; Synthesis 6 444–448

    Article  Google Scholar 

  • Johnstone R W, Ruefli A A and Lowe S W 2002 Apoptosis: a link between cancer genetics and chemotherapy; Cell 108 153–164

    Article  CAS  Google Scholar 

  • Jordan M A, Wendell K, Gardiner S, Derry W B, Copp H and Wilson L 1996 Mitotic block induced in HeLa cells by low concentrations of paclitaxel (Taxol) results in abnormal mitotic exit and apoptotic cell death; Cancer Res. 56 816–825

    CAS  PubMed  Google Scholar 

  • Kastan M B, Canman C E and Leonard C J 1995 P53, cell cycle control and apoptosis: implications for cancer; Cancer Metastasis Rev. 14 3–15

    Article  CAS  Google Scholar 

  • Kidd V J 1998 Proteolytic activities that mediate apoptosis; Annu. Rev. Physiol. 60 533–573

    Article  CAS  Google Scholar 

  • Kornblau S M 1998 The role of apoptosis in the pathogenesis, prognosis, and therapy of hematologic malignancies; Leukemia 12 S41–S46

    CAS  PubMed  Google Scholar 

  • Kortylewicz Z P 1990 Phosphoramidate peptide inhibition of human skin fibroblast collagenase; J. Med. Chem. 33 263–273

    Article  CAS  Google Scholar 

  • Li P, Nijhawan D, Budihardjo I, Srinivasula S M, Ahmad M, Alnemri E S and Wang X D 1997 Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade; Cell 91 479–489

    Article  CAS  Google Scholar 

  • Mosmann T 1983 Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytoxicity assays; J. Immunol. Methods 65 55–63

    Article  CAS  Google Scholar 

  • Nagata S 1997 Apoptosis by death factor; Cell 88 355–365

    Article  CAS  Google Scholar 

  • Nayfield S G, Karp J E, Ford L G, Dorr F A and Kramer B S 1991 Potential role of tamoxifen in prevention of breast cancer; J. Natl. Cancer Inst. 83 1450–1459

    Article  CAS  Google Scholar 

  • Niu Y L, Du W, Jiang Y Y, Cao S L and Zhao Y F 2001 Apoptosis of HCT-15 cell lines induced by a kind of N-phosphoryl branched dipeptide; J. Tsinghua Univ. 7 101–103 (S1)

    Google Scholar 

  • Reeves J P 1979 Accumulation of amino acids by lysosomes incubated with amino acid methyl esters; J. Biol. Chem. 254 8914–8921

    CAS  PubMed  Google Scholar 

  • Sausville E A, Elsayed Y, Monga M and Kim G 2003 Signal transduction-directed cancer treatments; Annu. Rev. Pharmacol. Toxicol. 43 199–231

    Article  CAS  Google Scholar 

  • Schulte-Hermann R, Bursch W, Low-Baselli A, Wagner A and Grasl-Kraupp B 1997 Apoptosis in the liver and its role in hepatocarcinogenesis; Cell. Biol. Toxicol. 13 339–348

    Article  CAS  Google Scholar 

  • Smets A 1994 Programmed cell death (apoptosis) and response to anti-cancer drugs; Anticancer Drugs 5 3–9

    Article  CAS  Google Scholar 

  • Thiele D L 1992 Apoptosis is induced in cells with cytolytic potential by L-leucyl-L-leucine methyl ester; J. Immunol. 148 3950–3957

    CAS  PubMed  Google Scholar 

  • Thiele D L and Lipsky P E 1985 Modulation of human natural killer cell function by L-leucine methyl ester: monocyte-dependent depletion from human peripheral blood mononuclear cells; J. Immunol. 134 786–793

    CAS  PubMed  Google Scholar 

  • Thompson C B 1995 Apoptosis in the pathogenesis and treatment of disease; Science 267 1456–1462

    Article  CAS  Google Scholar 

  • Van Engeland M, Nieland L J W, Ramaekers F C S, Schutte B and Reutelingsperger C P M 1998 Annexin V-affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure; Cytometry 31 1–9

    Article  Google Scholar 

  • Yang J, Jiang Y Y, Liu F and Zhao Y F 2006 Mitochondria-regulated death pathway mediates (DIPP-L-Leu)(2)-L-LysOCH(3)-induced K562 cells apoptosis; Protein Peptide Lett. 13 129–134

    Article  Google Scholar 

  • Zhao Y F, Ju Y, Li Y M, Wang Q, Yin Y W and Tan B 1995 Self-activation of N-phosphoamino acids and N-phosphodipeptide in oligopeptide formation; Int. J. Peptide Protein Res. 45 514–518

    Article  CAS  Google Scholar 

  • Zhao Y F, Zhang J C, Cao S X, Xu J, Rong C L and Qu L B 2004 Synthesis of N-(diisopropyloxyphosphoryl) amino acids; Chinese J. Org. Chem. 24 609–615

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Yang Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, F., Liu, SY., Xu, P. et al. Apoptosis induced by (di-isopropyloxyphoryl-Trp)2-Lys-OCH3 in K562 and HeLa cells. J Biosci 33, 55–62 (2008). https://doi.org/10.1007/s12038-008-0001-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-008-0001-3

Keywords

Navigation