Log in

Corticospinal-specific Shh overexpression in combination with rehabilitation promotes CST axonal sprouting and skilled motor functional recovery after ischemic stroke

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Ischemic stroke often leads to permanent neurological impairments, largely due to limited neuroplasticity in adult central nervous system. Here, we first showed that the expression of Sonic Hedgehog (Shh) in corticospinal neurons (CSNs) peaked at the 2nd postnatal week, when corticospinal synaptogenesis occurs. Overexpression of Shh in adult CSNs did not affect motor functions and had borderline effects on promoting the recovery of skilled locomotion following ischemic stroke. In contrast, CSNs-specific Shh overexpression significantly enhanced the efficacy of rehabilitative training, resulting in robust axonal sprouting and synaptogenesis of corticospinal axons into the denervated spinal cord, along with significantly improved behavioral outcomes. Mechanistically, combinatory treatment led to additional mTOR activation in CSNs when compared to that evoked by rehabilitative training alone. Taken together, our study unveiled a role of Shh, a morphogen involved in early development, in enhancing neuroplasticity, which significantly improved the outcomes of rehabilitative training. These results thus provide novel insights into the design of combinatory treatment for stroke and traumatic central nervous system injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All original data will be made available on reasonable request to Shukun Hu.

References

  1. Campbell BCV, De Silva DA, Macleod MR, Coutts SB, Schwamm LH, Davis SM, Donnan GA (2019) Ischaemic stroke. Nat Rev Dis Primers 5:70

    Article  PubMed  Google Scholar 

  2. Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR et al (2020) Heart disease and stroke statistics-2020 update: a report from the American Heart Association. Circulation 141:e139–e596

    Article  PubMed  Google Scholar 

  3. Dimyan MA, Cohen LG (2011) Neuroplasticity in the context of motor rehabilitation after stroke. Nat Rev Neurol 7:76–85

    Article  PubMed  PubMed Central  Google Scholar 

  4. Joy MT, Carmichael ST (2021) Encouraging an excitable brain state: mechanisms of brain repair in stroke. Nat Rev Neurosci 22:38–53

    Article  CAS  PubMed  Google Scholar 

  5. Langhorne P, Bernhardt J, Kwakkel G (2011) Stroke rehabilitation. Lancet (London, England) 377:1693–1702

    Article  PubMed  Google Scholar 

  6. Murphy TH, Corbett D (2009) Plasticity during stroke recovery: from synapse to behaviour. Nat Rev Neurosci 10:861–872

    Article  CAS  PubMed  Google Scholar 

  7. Alia C, Spalletti C, Lai S, Panarese A, Lamola G, Bertolucci F, Vallone F, Di Garbo A et al (2017) Neuroplastic changes following brain ischemia and their contribution to stroke recovery: novel approaches in neurorehabilitation. Front Cell Neurosci 11:76

    Article  PubMed  PubMed Central  Google Scholar 

  8. Nudo RJ (2007) Postinfarct cortical plasticity and behavioral recovery. Stroke 38:840–845

    Article  PubMed  Google Scholar 

  9. Wahl AS, Omlor W, Rubio JC, Chen JL, Zheng H, Schröter A, Gullo M, Weinmann O et al (2014) Neuronal repair. Asynchronous therapy restores motor control by rewiring of the rat corticospinal tract after stroke. Science (New York, N.Y.) 344:1250–1255

    Article  CAS  PubMed  Google Scholar 

  10. Echelard Y, Epstein DJ, St-Jacques B, Shen L, Mohler J, McMahon JA, McMahon AP (1993) Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 75:1417–1430

    Article  CAS  PubMed  Google Scholar 

  11. Ericson J, Muhr J, Placzek M, Lints T, Jessell TM, Edlund T (1995) Sonic hedgehog induces the differentiation of ventral forebrain neurons: a common signal for ventral patterning within the neural tube. Cell 81:747–756

    Article  CAS  PubMed  Google Scholar 

  12. Lum L, Beachy PA (2004) The Hedgehog response network: sensors, switches, and routers. Science (New York, N.Y.) 304:1755–1759

  13. Charron F, Stein E, Jeong J, McMahon AP, Tessier-Lavigne M (2003) The morphogen sonic hedgehog is an axonal chemoattractant that collaborates with netrin-1 in midline axon guidance. Cell 113:11–23

    Article  CAS  PubMed  Google Scholar 

  14. Okada A, Charron F, Morin S, Shin DS, Wong K, Fabre PJ, Tessier-Lavigne M, McConnell SK (2006) Boc is a receptor for sonic hedgehog in the guidance of commissural axons. Nature 444:369–373

    Article  CAS  PubMed  Google Scholar 

  15. Yam PT, Langlois SD, Morin S, Charron F (2009) Sonic hedgehog guides axons through a noncanonical, Src-family-kinase-dependent signaling pathway. Neuron 62:349–362

    Article  CAS  PubMed  Google Scholar 

  16. Harwell CC, Parker PR, Gee SM, Okada A, McConnell SK, Kreitzer AC, Kriegstein AR (2012) Sonic hedgehog expression in corticofugal projection neurons directs cortical microcircuit formation. Neuron 73:1116–1126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zeiler SR, Krakauer JW (2013) The interaction between training and plasticity in the poststroke brain. Curr Opin Neurol 26:609–616

    Article  PubMed  PubMed Central  Google Scholar 

  18. Arlotta P, Molyneaux BJ, Chen J, Inoue J, Kominami R, Macklis JD (2005) Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo. Neuron 45:207–221

    Article  CAS  PubMed  Google Scholar 

  19. Rousselet E, Kriz J, Seidah NG (2012) Mouse model of intraluminal MCAO: cerebral infarct evaluation by cresyl violet staining. J Vis Exp 69:4038

  20. Carmel JB, Kimura H, Martin JH (2014) Electrical stimulation of motor cortex in the uninjured hemisphere after chronic unilateral injury promotes recovery of skilled locomotion through ipsilateral control. J Neurosci 34:462–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu Y, Wang X, Li W, Zhang Q, Li Y, Zhang Z, Zhu J, Chen B et al (2017) A Sensitized IGF1 Treatment Restores Corticospinal Axon-Dependent Functions. Neuron 95:817-833.e814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Farr TD, Whishaw IQ (2002) Quantitative and qualitative impairments in skilled reaching in the mouse (Mus musculus) after a focal motor cortex stroke. Stroke 33:1869–1875

    Article  PubMed  Google Scholar 

  23. Wang X, Liu Y, Li X, Zhang Z, Yang H, Zhang Y, Williams PR, Alwahab NSA et al (2017) Deconstruction of corticospinal circuits for goal-directed motor skills. Cell 171:440-455.e414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. García-Alías G, Barkhuysen S, Buckle M, Fawcett JW (2009) Chondroitinase ABC treatment opens a window of opportunity for task-specific rehabilitation. Nat Neurosci 12:1145–1151

    Article  PubMed  Google Scholar 

  25. Hu S, Zheng J, Du Z, Wu G (2020) Knock down of lncRNA H19 promotes axon sprouting and functional recovery after cerebral ischemic stroke. Brain Res 1732:146681

    Article  CAS  PubMed  Google Scholar 

  26. Charytoniuk D, Porcel B, Rodríguez Gomez J, Faure H, Ruat M, Traiffort E (2002) Sonic Hedgehog signalling in the develo** and adult brain. J Physiol Paris 96:9–16

    Article  CAS  PubMed  Google Scholar 

  27. Bareyre FM, Kerschensteiner M, Misgeld T, Sanes JR (2005) Transgenic labeling of the corticospinal tract for monitoring axonal responses to spinal cord injury. Nat Med 11:1355–1360

    Article  CAS  PubMed  Google Scholar 

  28. Bregman BS, Kunkel-Bagden E, McAtee M, O’Neill A (1989) Extension of the critical period for developmental plasticity of the corticospinal pathway. J Comp Neurol 282:355–370

    Article  CAS  PubMed  Google Scholar 

  29. Gribnau AA, de Kort EJ, Dederen PJ, Nieuwenhuys R (1986) On the development of the pyramidal tract in the rat. II. An anterograde tracer study of the outgrowth of the corticospinal fibers. Anat Embryol (Berl) 175:101–110

    Article  CAS  PubMed  Google Scholar 

  30. Brown RE, Milner PM (2003) The legacy of Donald O. Hebb: more than the Hebb synapse. Nat Rev Neurosci 4:1013–1019

    Article  CAS  PubMed  Google Scholar 

  31. Fouad K, Tetzlaff W (2012) Rehabilitative training and plasticity following spinal cord injury. Exp Neurol 235:91–99

    Article  CAS  PubMed  Google Scholar 

  32. Krakauer JW (2006) Motor learning: its relevance to stroke recovery and neurorehabilitation. Curr Opin Neurol 19:84–90

    Article  PubMed  Google Scholar 

  33. Liu K, Lu Y, Lee JK, Samara R, Willenberg R, Sears-Kraxberger I, Tedeschi A, Park KK et al (2010) PTEN deletion enhances the regenerative ability of adult corticospinal neurons. Nat Neurosci 13:1075–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Maier IC, Baumann K, Thallmair M, Weinmann O, Scholl J, Schwab ME (2008) Constraint-induced movement therapy in the adult rat after unilateral corticospinal tract injury. J Neurosci 28:9386–9403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zareen N, Dodson S, Armada K, Awad R, Sultana N, Hara E, Alexander H, Martin JH (2018) Stimulation-dependent remodeling of the corticospinal tract requires reactivation of growth-promoting developmental signaling pathways. Exp Neurol 307:133–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Biever A, Valjent E, Puighermanal E (2015) Ribosomal protein S6 phosphorylation in the nervous system: from regulation to function. Front Mol Neurosci 8:75

    Article  PubMed  PubMed Central  Google Scholar 

  37. Park KK, Liu K, Hu Y, Smith PD, Wang C, Cai B, Xu B, Connolly L et al (2008) Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science (New York, N.Y.) 322:963–966

    Article  CAS  PubMed  Google Scholar 

  38. Mitchell N, Petralia RS, Currier DG, Wang YX, Kim A, Mattson MP, Yao PJ (2012) Sonic hedgehog regulates presynaptic terminal size, ultrastructure and function in hippocampal neurons. J Cell Sci 125:4207–4213

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Yao PJ, Petralia RS, Ott C, Wang YX, Lippincott-Schwartz J, Mattson MP (2015) Dendrosomatic Sonic Hedgehog signaling in hippocampal neurons regulates axon elongation. J Neurosci 35:16126–16141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Martinez JA, Kobayashi M, Krishnan A, Webber C, Christie K, Guo G, Singh V, Zochodne DW (2015) Intrinsic facilitation of adult peripheral nerve regeneration by the Sonic hedgehog morphogen. Exp Neurol 271:493–505

    Article  CAS  PubMed  Google Scholar 

  41. Scheib J, Höke A (2013) Advances in peripheral nerve regeneration. Nat Rev Neurol 9:668–676

    Article  CAS  PubMed  Google Scholar 

  42. Hu S, Wu G, Wu B, Du Z, Zhang Y (2022) Rehabilitative training paired with peripheral stimulation promotes motor recovery after ischemic cerebral stroke. Exp Neurol 349:113960

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from National Natural Science Foundation (81501007), the Tibet Natural Science Foundation (XZ2019ZR-ZY41), and Research Initiation Fund of Huashan Hospital Affiliated to Fudan University (2021QD044).

Author information

Authors and Affiliations

Authors

Contributions

B.W. and S.H. conceived the experiments. B.W., L.Y., C.X., F.F., H.Y., L.C., G.W., Z.D., and J.H. performed the experiments. B.W. and S.H. prepared the manuscript with input from all authors.

Corresponding author

Correspondence to Shukun Hu.

Ethics declarations

Ethics Approval

All surgical procedures and behavioral measurements involved in this study were approved by the Use and Care of Animals Committee of Fudan University. All experiments were performed according to the National Institutes of Health Guide for the Care and Use of Laboratory Animals guidelines.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, B., Yang, L., **, C. et al. Corticospinal-specific Shh overexpression in combination with rehabilitation promotes CST axonal sprouting and skilled motor functional recovery after ischemic stroke. Mol Neurobiol 61, 2186–2196 (2024). https://doi.org/10.1007/s12035-023-03642-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03642-y

Keywords

Navigation