Log in

Genetic Ablation of Dentate Hilar Somatostatin-Positive GABAergic Interneurons is Sufficient to Induce Cognitive Impairment

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Aging is often associated with a decline in cognitive function. A reduction in the number of somatostatin-positive (SOM+) interneurons in the dentate gyrus (DG) has been described in cognitively impaired but not in unimpaired aged rodents. However, it remains unclear whether the reduction in SOM + interneurons in the DG hilus is causal for age-related cognitive dysfunction. We hypothesized that hilar SOM+ interneurons play an essential role in maintaining cognitive function and that a reduction in the number of hilar SOM + interneurons might be sufficient to induce cognitive dysfunction. Hilar SOM+ interneurons were ablated by expressing a diphtheria toxin transgene specifically in these interneurons, which resulted in a reduction in the number of SOM+ /GAD-67+ neurons and dendritic spine density in the DG. C-fos and Iba-1 immunostainings were increased in DG and CA3, but not CA1, and BDNF protein expression in the hippocampus was decreased. Behavioral testing showed a reduced recognition index in the novel object recognition test, decreased alternations in the Y maze test, and longer latencies and path lengths in the learning and reversal learning phases of the Morris water maze. Our results show that partial genetic ablation of SOM+ hilar interneurons is sufficient to increase activity in DG and CA3, as has been described to occur with aging and to induce an impairment of learning and memory functions. Thus, partial ablation of hilar SOM + interneurons may be a significant contributing factor to age-related cognitive dysfunction. These mice may also be useful as a cellularly defined model of hippocampal aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig.6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

All original research data will be archived in the Harvard Dataverse repository.

References

  1. Salthouse TA (2019) Trajectories of normal cognitive aging. Psychol Aging 34:17–24. https://doi.org/10.1037/pag0000288

    Article  PubMed  Google Scholar 

  2. Berger M, Nadler JW, Browndyke J et al (2015) Postoperative cognitive dysfunction. Anesthesiol Clin 33:517–550. https://doi.org/10.1016/j.anclin.2015.05.008

    Article  PubMed  PubMed Central  Google Scholar 

  3. Berger M, Schenning KJ, Brown CH et al (2018) Best practices for postoperative brain health. Anesth Analg 127:1406–1413. https://doi.org/10.1213/ANE.0000000000003841

    Article  PubMed  PubMed Central  Google Scholar 

  4. Evered L, Silbert B, Knopman DS et al (2018) Recommendations for the nomenclature of cognitive change associated with anaesthesia and surgery—2018. Anesthesiology 129:872–879. https://doi.org/10.1097/ALN.0000000000002334

    Article  CAS  PubMed  Google Scholar 

  5. Moller J, Cluitmans P, Rasmussen L et al (1998) Long-term postoperative cognitive dysfunction in the elderly: ISPOCD1 study. The Lancet 351:857–861. https://doi.org/10.1016/S0140-6736(97)07382-0

    Article  CAS  Google Scholar 

  6. Gao F, Edden RAE, Li M et al (2013) Edited magnetic resonance spectroscopy detects an age-related decline in brain GABA levels. Neuroimage 78:75–82. https://doi.org/10.1016/j.neuroimage.2013.04.012

    Article  CAS  PubMed  Google Scholar 

  7. Duarte JMN, Do KQ, Gruetter R (2014) Longitudinal neurochemical modifications in the aging mouse brain measured in vivo by 1H magnetic resonance spectroscopy. Neurobiol Aging 35:1660–1668. https://doi.org/10.1016/j.neurobiolaging.2014.01.135

    Article  CAS  PubMed  Google Scholar 

  8. Engin E, Sigal M, Benke D et al (2020) Bidirectional regulation of distinct memory domains by α5-subunit-containing GABAA receptors in CA1 pyramidal neurons. Learn Mem 27:423–428. https://doi.org/10.1101/lm.052084.120

  9. Engin E, Zarnowska ED, Benke D et al (2015) Tonic inhibitory control of dentate gyrus granule cells by α5-containing GABAA receptors reduces memory interference. J Neurosci 35:13698–13712. https://doi.org/10.1523/JNEUROSCI.1370-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lin C-W, Chang L-C, Ma T et al (2021) Older molecular brain age in severe mental illness. Mol Psychiatry 26:3646–3656. https://doi.org/10.1038/s41380-020-0834-1

    Article  CAS  PubMed  Google Scholar 

  11. Bareggi SR (1982) Decreased CSF concentrations of homovanillic acid and γ-aminobutyric acid in Alzheimer’s disease. Arch Neurol 39:709. https://doi.org/10.1001/archneur.1982.00510230035010

    Article  CAS  PubMed  Google Scholar 

  12. Bartsch T, Wulff P (2015) The hippocampus in aging and disease: from plasticity to vulnerability. Neuroscience 309:1–16. https://doi.org/10.1016/j.neuroscience.2015.07.084

    Article  CAS  PubMed  Google Scholar 

  13. Driscoll I, Howard SR, Stone JC et al (2006) The aging hippocampus: a multi-level analysis in the rat. Neuroscience 139:1173–1185. https://doi.org/10.1016/j.neuroscience.2006.01.040

    Article  CAS  PubMed  Google Scholar 

  14. Andrews-Zwilling Y, Gillespie AK, Kravitz AV et al (2012) Hilar GABAergic interneuron activity controls spatial learning and memory retrieval. PLoS One 7:e40555. https://doi.org/10.1371/journal.pone.0040555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Spiegel AM, Koh MT, Vogt NM et al (2013) Hilar interneuron vulnerability distinguishes aged rats with memory impairment. J Compar Neurol 521:3508–3523. https://doi.org/10.1002/cne.23367

    Article  CAS  Google Scholar 

  16. Yassa MA, Lacy JW, Stark SM et al (2011) Pattern separation deficits associated with increased hippocampal CA3 and dentate gyrus activity in nondemented older adults. Hippocampus 21:968–979. https://doi.org/10.1002/hipo.20808

    Article  PubMed  Google Scholar 

  17. Oh MM, Simkin D, Disterhoft JF (2016) Intrinsic hippocampal excitability changes of opposite signs and different origins in CA1 and CA3 pyramidal neurons underlie aging-related cognitive deficits. Front Syst Neurosci 10:52. https://doi.org/10.3389/fnsys.2016.00052

  18. Koh MT, Rosenzweig-Lipson S, Gallagher M (2013) Selective GABAA α5 positive allosteric modulators improve cognitive function in aged rats with memory impairment. Neuropharmacology 64:145–152. https://doi.org/10.1016/j.neuropharm.2012.06.023

    Article  CAS  PubMed  Google Scholar 

  19. Jessen SB, Mathiesen C, Lind BL, Lauritzen M (2017) Interneuron deficit associates attenuated network synchronization to mismatch of energy supply and demand in aging mouse brains. Cereb Cortex 27:646–659. https://doi.org/10.1093/cercor/bhv261

    Article  PubMed  Google Scholar 

  20. Thomé A, Gray DT, Erickson CA et al (2016) Memory impairment in aged primates is associated with region-specific network dysfunction. Mol Psychiatry 21:1257–1262. https://doi.org/10.1038/mp.2015.160

    Article  CAS  PubMed  Google Scholar 

  21. Sohal VS, Zhang F, Yizhar O, Deisseroth K (2009) Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459:698–702. https://doi.org/10.1038/nature07991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Waller R, Mandeya M, Viney E et al (2020) Histological characterization of interneurons in Alzheimer’s disease reveals a loss of somatostatin interneurons in the temporal cortex. Neuropathology 40:336–346. https://doi.org/10.1111/neup.12649

    Article  CAS  PubMed  Google Scholar 

  23. Koh MT, Spiegel AM, Gallagher M (2014) Age-associated changes in hippocampal-dependent cognition in Diversity Outbred mice. Hippocampus 24:1300–1307. https://doi.org/10.1002/hipo.22311

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lyu J, Nagarajan R, Kambali M et al (2023) Selective inhibition of somatostatin-positive dentate hilar interneurons induces age-related cellular changes and cognitive dysfunction. PNAS Nexus 2:pgad134. https://doi.org/10.1093/pnasnexus/pgad134

  25. Bevins RA, Besheer J (2006) Object recognition in rats and mice: a one-trial non-matching-to-sample learning task to study “recognition memory.” Nat Protoc 1:1306–1311. https://doi.org/10.1038/nprot.2006.205

    Article  PubMed  Google Scholar 

  26. Vorhees CV, Williams MT (2006) Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1:848–858. https://doi.org/10.1038/nprot.2006.116

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kraeuter AK, Guest PC, Sarnyai Z (2019) The Y-Maze for assessment of spatial working and reference memory in mice. Methods Mol Biol 1916:105–111. https://doi.org/10.1007/978-1-4939-8994-2_10

  28. Rajasekar N, Nath C, Hanif K, Shukla R (2017) Intranasal insulin administration ameliorates streptozotocin (ICV)-induced insulin receptor dysfunction, neuroinflammation, amyloidogenesis, and memory impairment in rats. Mol Neurobiol 54:6507–6522. https://doi.org/10.1007/s12035-016-0169-8

    Article  CAS  PubMed  Google Scholar 

  29. Risher WC, Ustunkaya T, Singh Alvarado J, Eroglu C (2014) Rapid Golgi analysis method for efficient and unbiased classification of dendritic spines. PLoS One 9:e107591. https://doi.org/10.1371/journal.pone.0107591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yuan M, Meyer T, Benkowitz C et al (2017) Somatostatin-positive interneurons in the dentate gyrus of mice provide local- and long-range septal synaptic inhibition. Elife 6:e21105. https://doi.org/10.7554/eLife.21105

  31. Hudson AE (2018) Genetic reporters of neuronal activity: c-Fos and G-CaMP6. Methods Enzymol 603:197–220. https://doi.org/10.1016/bs.mie.2018.01.023

  32. Oh H, Lewis DA, Sibille E (2016) The role of BDNF in age-dependent changes of excitatory and inhibitory synaptic markers in the human prefrontal cortex. Neuropsychopharmacology 41:3080–3091. https://doi.org/10.1038/npp.2016.126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Andrews-Zwilling Y, Bien-Ly N, Xu Q et al (2010) Apolipoprotein E4 causes age- and tau-dependent impairment of GABAergic interneurons, leading to learning and memory deficits in mice. J Neurosci 30:13707–13717. https://doi.org/10.1523/JNEUROSCI.4040-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Beal MF, Mazurek MF, Tran VT et al (1979) (1985) Reduced numbers of somatostatin receptors in the cerebral cortex in Alzheimer’s disease. Science 229:289–291. https://doi.org/10.1126/science.2861661

    Article  Google Scholar 

  35. Davies P, Katzman R, Terry RD (1980) Reduced somatostatin-like immunoreactivity in cerebral cortex from cases of Alzheimer disease and Alzheimer senile dementa. Nature 288:279–280. https://doi.org/10.1038/288279a0

    Article  CAS  PubMed  Google Scholar 

  36. Dournaud P, Delaere P, Hauw JJ, Epelbaum J (1995) Differential correlation between neurochemical deficits, neuropathology, and cognitive status in Alzheimer’s disease. Neurobiol Aging 16:817–823. https://doi.org/10.1016/0197-4580(95)00086-T

    Article  CAS  PubMed  Google Scholar 

  37. Dawbarn D, Rossor MN, Mountjoy CQ et al (1986) Decreased somatostatin immunoreactivity but not neuropeptide Y immunoreactivity in cerebral cortex in senile dementia of Alzheimer type. Neurosci Lett 70:154–159. https://doi.org/10.1016/0304-3940(86)90455-6

    Article  CAS  PubMed  Google Scholar 

  38. Freund TF, Buzsáki G (1998) Interneurons of the hippocampus. Hippocampus 6:347–470. https://doi.org/10.1002/(SICI)1098-1063(1996)6:4%3c347::AID-HIPO1%3e3.0.CO;2-I

    Article  Google Scholar 

  39. Houser CR (2007) Interneurons of the dentate gyrus: an overview of cell types, terminal fields and neurochemical identity. Prog Brain Res 163:217–232. https://doi.org/10.1016/S0079-6123(07)63013-1

  40. Lau CG, Murthy VN (2012) Activity-dependent regulation of inhibition via GAD67. J Neurosci 32:8521–8531. https://doi.org/10.1523/JNEUROSCI.1245-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bakker A, Krauss GL, Albert MS et al (2012) Reduction of hippocampal hyperactivity improves cognition in amnestic mild cognitive impairment. Neuron 74:467–474. https://doi.org/10.1016/j.neuron.2012.03.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wilson IA (2005) Age-associated alterations of hippocampal place cells are subregion specific. J Neurosci 25:6877–6886. https://doi.org/10.1523/JNEUROSCI.1744-05.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Beheshti F, Vakilian A, Navari M et al (2023) Effects of Ocimum basilicum L. extract on hippocampal oxidative stress, inflammation, and BDNF expression in amnesic aged rats. Exp Aging Res 1–16. https://doi.org/10.1080/0361073X.2023.2210240

  44. von Bohlen und Halbach O, Zacher C, Gass P, Unsicker K (2006) Age-related alterations in hippocampal spines and deficiencies in spatial memory in mice. J Neurosci Res 83:525–531. https://doi.org/10.1002/jnr.20759

    Article  CAS  Google Scholar 

  45. Mahmmoud RR, Sase S, Aher YD et al (2015) Spatial and working memory is linked to spine density and mushroom spines. PLoS One 10:e0139739. https://doi.org/10.1371/journal.pone.0139739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The research reported in this study was supported by the National Institute of General Medical Sciences of the National Institutes of Health under award number R01GM128183 to U.R. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. We thank Dr. CheMyong Ko for providing access to his microscopes.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: UR; investigation: RN; analysis and interpretation: RN, JL, UR; methodology: RN, JL, MK, MW, CAC-H, CDC, UR; funding acquisition: UR; supervision: UR; writing – original draft: RN, UR; writing – review and editing: RN, JL, MK, MW, CDC, CAC-H, UR.

Corresponding author

Correspondence to Uwe Rudolph.

Ethics declarations

Conflict of Interest

Uwe Rudolph is a Scientific Advisor to Damona Pharmaceuticals. The other authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagarajan, R., Lyu, J., Kambali, M. et al. Genetic Ablation of Dentate Hilar Somatostatin-Positive GABAergic Interneurons is Sufficient to Induce Cognitive Impairment. Mol Neurobiol 61, 567–580 (2024). https://doi.org/10.1007/s12035-023-03586-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03586-3

Keywords

Navigation