Log in

Regulation of Microglial Activation by Wnt/β-Catenin Signaling After Global Cerebral Ischemia in Mice

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Microglia are immunocompetent cells in the central nervous system. Following cerebral ischemia, microglia will be rapidly activated and undergo proliferation, morphological transformation, and changes in gene expression and function. At present, the regulatory mechanisms of microglial activation following ischemia remain largely unclear. In this study, we took advantage of CX3CR1GFP/+ fluorescent mice and a global cerebral ischemia-reperfusion model to investigate the mechanisms of microglial activation following different degrees of global ischemia. Our results showed that the proliferation of microglia was gated by the degree of ischemia. Marked microglial de-ramification and proliferation were observed after 60 min of ischemia but not in transient ischemia (20 min). Immunohistology, qRT-PCR, and Western blotting analysis showed that microglial activation was accompanied with a reduction in Wnt/β-catenin signaling after cerebral ischemia. Downregulation of Wnt/β-catenin signaling using Wnt antagonist XAV939 during 20 min ischemia promoted microglial de-ramification and proliferation. In contrast, enhancing Wnt/β-catenin signaling using Wnt agonist LiCl during 60 min ischemia-reduced microglial de-ramification and proliferation. Importantly, we found that Wnt agonist inhibited inflammation in the ischemic brain and was conducive to animal behavioral recovery. Collectively, these data demonstrated that Wnt/β-catenin signaling played a key role in microglial activation following cerebral ischemia, and regulating microglial activation may be a potential therapeutic strategy for the treatment of ischemic stroke.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data supporting the conclusions of this article are available from the corresponding author upon reasonable request.

Abbreviations

CNS:

central nervous system

JAK:

Janus-activated kinase

STAT:

signal transducer and activator of transcription

IFN-γ:

interferon-γ

TLR:

toll-like receptors

CSF1R:

colony-stimulating factor 1 receptor

Lef1:

lymphoid enhancer-binding factor 1

Ctnnb1:

catenin beta 1

TCF7L2:

transcription factor 7-like 2

Fzd9:

frizzled 9

TCF1:

T cell factor 1

Arg1:

arginase-1

TGFβ:

transforming growth factor beta

IL-1β:

interleukin 1-beta

IL-4:

interleukin 4

IL-6:

interleukin 6

iNOS:

inducible nitric oxide synthase

BCAL:

bilateral common carotid artery ligation

BCCA:

bilateral common carotid arteries

CBF:

cerebral blood flow

LSI:

laser speckle contrast imaging

FBS:

fetal bovine serum

PBS:

phosphate-buffered saline

OGD/R:

oxygen-glucose deprivation and reoxygenation

DMSO:

dimethyl sulfoxide

PFA:

paraformaldehyde

BrdU:

bromodeoxyuridine

MCAO:

middle cerebral occlusion

RT-qPCR:

quantitative real-time polymerase chain reaction

GFP:

green fluorescent protein

ROI:

region of interest

PU.1:

Spi-1 proto-oncogene

Irf8:

interferon regulatory factor 8

References

  1. Askew K, Li K, Olmos-Alonso A, Garcia-Moreno F, Liang Y, Richardson P et al (2017) Coupled proliferation and apoptosis maintain the rapid turnover of microglia in the adult brain. Cell Rep 18(2):391–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Huang Y, Xu Z, **ong S, Sun F, Qin G, Hu G et al (2018) Repopulated microglia are solely derived from the proliferation of residual microglia after acute depletion. Nat Neurosci 21(4):530–540

    Article  CAS  PubMed  Google Scholar 

  3. Zhan L, Krabbe G, Du F, Jones I, Reichert MC, Telpoukhovskaia M et al (2019) Proximal recolonization by self-renewing microglia re-establishes microglial homeostasis in the adult mouse brain. PLoS Biol 17(2):e3000134

    Article  PubMed  PubMed Central  Google Scholar 

  4. Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308(5726):1314–1318

    Article  CAS  PubMed  Google Scholar 

  5. Roth TL, Nayak D, Atanasijevic T, Koretsky AP, Latour LL, McGavern DB (2014) Transcranial amelioration of inflammation and cell death after brain injury. Nature 505(7482):223–228

    Article  CAS  PubMed  Google Scholar 

  6. Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10(11):1387–1394

    Article  CAS  PubMed  Google Scholar 

  7. Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91(2):461–553

    Article  CAS  PubMed  Google Scholar 

  8. Zhang S (2019) Microglial activation after ischaemic stroke. Stroke Vasc Neurol 4(2):71–74

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ma Y, Wang J, Wang Y, Yang GY (2017) The biphasic function of microglia in ischemic stroke. Prog Neurobiol 157:247–272

    Article  CAS  PubMed  Google Scholar 

  10. Paolicelli RC, Sierra A, Stevens B, Tremblay ME, Aguzzi A, Ajami B et al (2022) Microglia states and nomenclature: a field at its crossroads. Neuron 110(21):3458–3483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gao H, Ju F, Ti R, Zhang Y, Zhang S (2022) Differential regulation of microglial activation in response to different degree of ischemia. Front Immunol 13:792638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li T, Pang S, Yu Y, Wu X, Guo J, Zhang S (2013) Proliferation of parenchymal microglia is the main source of microgliosis after ischaemic stroke. Brain 136(Pt 12):3578–3588

    Article  PubMed  Google Scholar 

  13. Morrison HW, Filosa JA (2013) A quantitative spatiotemporal analysis of microglia morphology during ischemic stroke and reperfusion. J Neuroinflammation 10:4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Otxoa-de-Amezaga A, Miro-Mur F, Pedragosa J, Gallizioli M, Justicia C, Gaja-Capdevila N et al (2019) Microglial cell loss after ischemic stroke favors brain neutrophil accumulation. Acta Neuropathol 137(2):321–341

    Article  CAS  PubMed  Google Scholar 

  15. Zhou K, Chen J, Wu J, Wu Q, Jia C, Xu YXZ et al (2019) Atractylenolide III ameliorates cerebral ischemic injury and neuroinflammation associated with inhibiting JAK2/STAT3/Drp1-dependent mitochondrial fission in microglia. Phytomedicine 59:152922

    Article  CAS  PubMed  Google Scholar 

  16. Tang Z, Gan Y, Liu Q, Yin JX, Liu Q, Shi J et al (2014) CX3CR1 deficiency suppresses activation and neurotoxicity of microglia/macrophage in experimental ischemic stroke. J Neuroinflammation 11:26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sawano T, Watanabe F, Ishiguchi M, Doe N, Furuyama T, Inagaki S (2015) Effect of Sema4D on microglial function in middle cerebral artery occlusion mice. Glia 63(12):2249–2259

    Article  PubMed  Google Scholar 

  18. Perego C, Fumagalli S, De Simoni MG (2011) Temporal pattern of expression and colocalization of microglia/macrophage phenotype markers following brain ischemic injury in mice. J Neuroinflammation 8:174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ito U, Nagasao J, Kawakami E, Oyanagi K (2007) Fate of disseminated dead neurons in the cortical ischemic penumbra: ultrastructure indicating a novel scavenger mechanism of microglia and astrocytes. Stroke 38(9):2577–2583

    Article  PubMed  Google Scholar 

  20. Zhang W, Zhao J, Wang R, Jiang M, Ye Q, Smith AD et al (2019) Macrophages reprogram after ischemic stroke and promote efferocytosis and inflammation resolution in the mouse brain. CNS Neurosci Ther 25(12):1329–1342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Carbonell WS, Murase S, Horwitz AF, Mandell JW (2005) Migration of perilesional microglia after focal brain injury and modulation by CC chemokine receptor 5: an in situ time-lapse confocal imaging study. J Neurosci 25(30):7040–7047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yenari MA, Kauppinen TM, Swanson RA (2010) Microglial activation in stroke: therapeutic targets. Neurotherapeutics 7(4):378–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rajan WD, Wojtas B, Gielniewski B, Gieryng A, Zawadzka M, Kaminska B (2019) Dissecting functional phenotypes of microglia and macrophages in the rat brain after transient cerebral ischemia. Glia 67(2):232–245

    Article  PubMed  Google Scholar 

  24. Song D, Zhang X, Chen J, Liu X, Xue J, Zhang L et al (2019) Wnt canonical pathway activator TWS119 drives microglial anti-inflammatory activation and facilitates neurological recovery following experimental stroke. J Neuroinflammation 16(1):256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu X, Zhang X, Chen J, Song D, Zhang C, Chen R et al (2022) Chrysophanol facilitates long-term neurological recovery through limiting microglia-mediated neuroinflammation after ischemic stroke in mice. Int Immunopharmacol 112:109220

    Article  CAS  PubMed  Google Scholar 

  26. Kong L, Li W, Chang E, Wang W, Shen N, Xu X et al (2022) mtDNA-STING axis mediates microglial polarization via IRF3/NF-kappaB signaling after ischemic stroke. Front Immunol 13:860977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rivest S (2009) Regulation of innate immune responses in the brain. Nat Rev Immunol 9(6):429–439

    Article  CAS  PubMed  Google Scholar 

  28. Miron VE, Boyd A, Zhao JW, Yuen TJ, Ruckh JM, Shadrach JL et al (2013) M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat Neurosci 16(9):1211–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang J, He H, Qiao Y, Zhou T, He H, Yi S et al (2020) Priming of microglia with IFN-gamma impairs adult hippocampal neurogenesis and leads to depression-like behaviors and cognitive defects. Glia 68(12):2674–2692

    Article  PubMed  Google Scholar 

  30. Reusch N, Ravichandran KA, Olabiyi BF, Komorowska-Muller JA, Hansen JN, Ulas T et al (2022) Cannabinoid receptor 2 is necessary to induce toll-like receptor-mediated microglial activation. Glia 70(1):71–88

    Article  CAS  PubMed  Google Scholar 

  31. Squillace S, Salvemini D (2022) Toll-like receptor-mediated neuroinflammation: relevance for cognitive dysfunctions. Trends Pharmacol Sci 43(9):726–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Elmore MR, Najafi AR, Koike MA, Dagher NN, Spangenberg EE, Rice RA et al (2014) Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron 82(2):380–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rice RA, Spangenberg EE, Yamate-Morgan H, Lee RJ, Arora RP, Hernandez MX et al (2015) Elimination of microglia improves functional outcomes following extensive neuronal loss in the hippocampus. J Neurosci 35(27):9977–9989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Spangenberg EE, Lee RJ, Najafi AR, Rice RA, Elmore MR, Blurton-Jones M et al (2016) Eliminating microglia in Alzheimer’s mice prevents neuronal loss without modulating amyloid-beta pathology. Brain 139(Pt 4):1265–1281

    Article  PubMed  PubMed Central  Google Scholar 

  35. Otero K, Turnbull IR, Poliani PL, Vermi W, Cerutti E, Aoshi T et al (2009) Macrophage colony-stimulating factor induces the proliferation and survival of macrophages via a pathway involving DAP12 and beta-catenin. Nat Immunol 10(7):734–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Marchetti B, Pluchino S (2013) Wnt your brain be inflamed? Yes, it Wnt! Trends Mol Med 19(3):144–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Van Steenwinckel J, Schang AL, Krishnan ML, Degos V, Delahaye-Duriez A, Bokobza C et al (2019) Decreased microglial Wnt/beta-catenin signalling drives microglial pro-inflammatory activation in the develo** brain. Brain 142(12):3806–3833

    Article  PubMed  PubMed Central  Google Scholar 

  38. Halleskog C, Mulder J, Dahlstrom J, Mackie K, Hortobagyi T, Tanila H et al (2011) WNT signaling in activated microglia is proinflammatory. Glia 59(1):119–131

    Article  PubMed  Google Scholar 

  39. Zhu L, Wang L, Ju F, Ran Y, Wang C, Zhang S (2017) Transient global cerebral ischemia induces rapid and sustained reorganization of synaptic structures. J Cereb Blood Flow Metab 37(8):2756–2767

    Article  PubMed  Google Scholar 

  40. Ju F, Ran Y, Zhu L, Cheng X, Gao H, ** X et al (2018) Increased BBB permeability enhances activation of microglia and exacerbates loss of dendritic spines after transient global cerebral ischemia. Front Cell Neurosci 12:236

    Article  PubMed  PubMed Central  Google Scholar 

  41. Saura J, Tusell JM, Serratosa J (2003) High-yield isolation of murine microglia by mild trypsinization. Glia 44(3):183–189

    Article  PubMed  Google Scholar 

  42. **a Q, Li X, Zhou H, Zheng L, Shi J (2018) S100A11 protects against neuronal cell apoptosis induced by cerebral ischemia via inhibiting the nuclear translocation of annexin A1. Cell Death Dis 9(6):657

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zhu L, Wang L, Ju F, Khan A, Cheng X, Zhang S (2017) Reversible recovery of neuronal structures depends on the degree of neuronal damage after global cerebral ischemia in mice. Exp Neurol 289:1–8

    Article  PubMed  Google Scholar 

  44. Li T, Zhao J, **e W, Yuan W, Guo J, Pang S et al (2021) Specific depletion of resident microglia in the early stage of stroke reduces cerebral ischemic damage. J Neuroinflammation 18(1):81

    Article  PubMed  PubMed Central  Google Scholar 

  45. Weber BZC, Agca S, Domaniku A, Bilgic SN, Arabaci DH, Kir S (2022) Inhibition of epidermal growth factor receptor suppresses parathyroid hormone-related protein expression in tumours and ameliorates cancer-associated cachexia. J Cachexia Sarcopenia Muscle 13(3):1582–1594

    Article  PubMed  PubMed Central  Google Scholar 

  46. Srivastava P, Cronin CG, Scranton VL, Jacobson KA, Liang BT, Verma R (2020) Neuroprotective and neuro-rehabilitative effects of acute purinergic receptor P2X4 (P2X4R) blockade after ischemic stroke. Exp Neurol 329:113308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Heneka MT, Kummer MP, Latz E (2014) Innate immune activation in neurodegenerative disease. Nat Rev Immunol 14(7):463–477

    Article  CAS  PubMed  Google Scholar 

  48. Wolf SA, Boddeke HW, Kettenmann H (2017) Microglia in physiology and disease. Annu Rev Physiol 79:619–643

    Article  CAS  PubMed  Google Scholar 

  49. Ji YB, Gao Q, Tan XX, Huang XW, Ma YZ, Fang C et al (2021) Lithium alleviates blood-brain barrier breakdown after cerebral ischemia and reperfusion by upregulating endothelial Wnt/beta-catenin signaling in mice. Neuropharmacology 186:108474

    Article  CAS  PubMed  Google Scholar 

  50. Cheng J, Shen W, ** L, Pan J, Zhou Y, Pan G et al (2020) Treadmill exercise promotes neurogenesis and myelin repair via upregulating Wnt/betacatenin signaling pathways in the juvenile brain following focal cerebral ischemia/reperfusion. Int J Mol Med 45(5):1447–1463

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Colonna M, Butovsky O (2017) Microglia function in the central nervous system during health and neurodegeneration. Annu Rev Immunol 35:441–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lee TK, Kim H, Song M, Lee JC, Park JH, Ahn JH et al (2019) Time-course pattern of neuronal loss and gliosis in gerbil hippocampi following mild, severe, or lethal transient global cerebral ischemia. Neural Regen Res 14(8):1394–1403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Park CW, Lee JC, Ahn JH, Lee DH, Cho GS, Yan BC et al (2013) Neuronal damage using fluoro-Jade B histofluorescence and gliosis in the gerbil septum submitted to various durations of cerebral ischemia. Cell Mol Neurobiol 33(7):991–1001

    Article  CAS  PubMed  Google Scholar 

  54. Cotrina ML, Lou N, Tome-Garcia J, Goldman J, Nedergaard M (2017) Direct comparison of microglial dynamics and inflammatory profile in photothrombotic and arterial occlusion evoked stroke. Neuroscience 343:483–494

    Article  CAS  PubMed  Google Scholar 

  55. Wahul AB, Joshi PC, Kumar A, Chakravarty S (2018) Transient global cerebral ischemia differentially affects cortex, striatum and hippocampus in bilateral common carotid arterial occlusion (BCCAo) mouse model. J Chem Neuroanat 92:1–15

    Article  CAS  PubMed  Google Scholar 

  56. Kierdorf K, Erny D, Goldmann T, Sander V, Schulz C, Perdiguero EG et al (2013) Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat Neurosci 16(3):273–280

    Article  CAS  PubMed  Google Scholar 

  57. Olmos-Alonso A, Schetters ST, Sri S, Askew K, Mancuso R, Vargas-Caballero M et al (2016) Pharmacological targeting of CSF1R inhibits microglial proliferation and prevents the progression of Alzheimer's-like pathology. Brain 139(Pt 3):891–907

    Article  PubMed  PubMed Central  Google Scholar 

  58. Burguillos MA, Svensson M, Schulte T, Boza-Serrano A, Garcia-Quintanilla A, Kavanagh E et al (2015) Microglia-secreted galectin-3 acts as a toll-like receptor 4 ligand and contributes to microglial activation. Cell Rep 10(9):1626–1638

    Article  CAS  PubMed  Google Scholar 

  59. Rahimian R, Beland LC, Sato S, Kriz J (2021) Microglia-derived galectin-3 in neuroinflammation; a bittersweet ligand? Med Res Rev 41(4):2582–2589

    Article  CAS  PubMed  Google Scholar 

  60. Zheng H, Jia L, Liu CC, Rong Z, Zhong L, Yang L et al (2017) TREM2 promotes microglial survival by activating Wnt/beta-catenin pathway. J Neurosci 37(7):1772–1784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Young KF, Gardner R, Sariana V, Whitman SA, Bartlett MJ, Falk T et al (2021) Can quantifying morphology and TMEM119 expression distinguish between microglia and infiltrating macrophages after ischemic stroke and reperfusion in male and female mice? J Neuroinflammation 18(1):58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang L, Wang Y, **ao F, Wang S, **ng G, Li Y et al (2014) CKIP-1 regulates macrophage proliferation by inhibiting TRAF6-mediated Akt activation. Cell Res 24(6):742–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gomez-Nicola D, Fransen NL, Suzzi S, Perry VH (2013) Regulation of microglial proliferation during chronic neurodegeneration. J Neurosci 33(6):2481–2493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhou Y, Zhang L, Hao Y, Yang L, Fan S, **ao Z (2022) FKN/CX3CR1 axis facilitates migraine-Like behaviour by activating thalamic-cortical network microglia in status epilepticus model rats. J Headache Pain 23(1):42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Song J, Han K, Wang Y, Qu R, Liu Y, Wang S et al (2022) Microglial activation and oxidative stress in PM(2.5)-induced neurodegenerative disorders. Antioxidants (Basel) 11(8):1482

    Article  CAS  PubMed  Google Scholar 

  66. Kim RE, Shin CY, Han SH, Kwon KJ (2020) Astaxanthin suppresses PM2.5-induced neuroinflammation by regulating Akt phosphorylation in BV-2 microglial cells. Int J Mol Sci 21(19):7227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhao R, Hu W, Tsai J, Li W, Gan WB (2017) Microglia limit the expansion of beta-amyloid plaques in a mouse model of Alzheimer’s disease. Mol Neurodegener 12(1):47

    Article  PubMed  PubMed Central  Google Scholar 

  68. Willis EF, MacDonald KPA, Nguyen QH, Garrido AL, Gillespie ER, Harley SBR et al (2020) Repopulating microglia promote brain repair in an IL-6-dependent manner. Cell 180(5):833–46 e16

    Article  CAS  PubMed  Google Scholar 

  69. Jolivel V, Bicker F, Biname F, Ploen R, Keller S, Gollan R et al (2015) Perivascular microglia promote blood vessel disintegration in the ischemic penumbra. Acta Neuropathol 129(2):279–295

    Article  PubMed  Google Scholar 

  70. da Fonseca AC, Matias D, Garcia C, Amaral R, Geraldo LH, Freitas C et al (2014) The impact of microglial activation on blood-brain barrier in brain diseases. Front Cell Neurosci 8:362

    Article  PubMed  PubMed Central  Google Scholar 

  71. Morimoto M, Nakano T, Egashira S, Irie K, Matsuyama K, Wada M et al (2022) Haptoglobin regulates macrophage/microglia-induced inflammation and prevents ischemic brain damage via binding to HMGB1. J Am Heart Assoc 11(6):e024424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhang L, Wei W, Ai X, Kilic E, Hermann DM, Venkataramani V et al (2021) Extracellular vesicles from hypoxia-preconditioned microglia promote angiogenesis and repress apoptosis in stroke mice via the TGF-beta/Smad2/3 pathway. Cell Death Dis 12(11):1068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Szalay G, Martinecz B, Lenart N, Kornyei Z, Orsolits B, Judak L et al (2016) Microglia protect against brain injury and their selective elimination dysregulates neuronal network activity after stroke. Nat Commun 7:11499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chen B, Zhang M, Ji M, Zhang D, Chen B, Gong W et al (2022) The neuroprotective mechanism of lithium after ischaemic stroke. Commun Biol 5(1):105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Lei Wang, Liang Peng, and Li** Guan at the Core Facility of School of Life Sciences, Lanzhou University, for excellent technical assistance.

Funding

This study was supported by the National Natural Science Foundation of China (No. 82271402), the Natural Science Foundation of Gansu Province (No. 22JR5RA437), and the Excellent Graduate Student “Innovation Star” Program of Education Department of Gansu Province (No. 2021CXZX-027).

Author information

Authors and Affiliations

Authors

Contributions

JRL and SXZ designed the research plan; JRL, XYZ, and YYX performed the experiments; JRL, XYZ, and YYX analyzed the data; JRL and SXZ wrote the paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shengxiang Zhang.

Ethics declarations

Ethics approval and consent to participate

All experimental procedures in this study complied with the institutional guidelines from the Ethics Committee of Lanzhou University, China.

Consent to Publication

All authors have read and approved the submitted manuscript.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 2757 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Zhang, X., Xu, Y. et al. Regulation of Microglial Activation by Wnt/β-Catenin Signaling After Global Cerebral Ischemia in Mice. Mol Neurobiol 61, 308–325 (2024). https://doi.org/10.1007/s12035-023-03557-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03557-8

Keywords

Navigation