Log in

FUS Mutation Causes Disordered Lipid Metabolism in Skeletal Muscle Associated with ALS

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by dysfunction of the upper and lower motor neurons resulting in muscle weakness and wasting. Recently, several studies on ALS patients and ALS animal models indicated that intramuscular toxicity played a role in ALS disease progression; however, the mechanisms driving this are unknown. In this study, we explored the possible dysfunction of lipid metabolism in myocytes associated with ALS. Initially, skeletal muscle from 41 ALS patients, as well as 53 non-ALS control subjects, was investigated, and we identified that lipid droplet accumulation in the muscle fibers of ALS patients was significantly increased, especially in patients with FUS mutations. A myoblast (C2C12) cell line expressing mutant FUS (FUS-K510Q) was able to induce lipid droplet accumulation and mitochondrial dysfunction. Consistently, transgenic flies expressing FUS-K510Q under a muscle-specific driver showed elevated triglyceride levels in the flight muscles, as well as locomotor defects. Biochemical analysis of C2C12 cells and fly muscle tissues showed upregulation of PLIN2, and downregulation of ATGL and CPT1A, indicating inhibition of lipolysis and fatty acid β-oxidation in muscle cells with FUS mutations. Our study provided a potential explanation for the pathogenesis associated with lipid droplets accumulating in skeletal muscle in ALS. Our data also suggested that disordered lipid metabolism and mitochondrial dysfunction play a crucial role in intramuscular toxicity in ALS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets analyzed in this study are available from the corresponding author on reasonable request.

References

  1. Statland JM, Barohn RJ, McVey AL, Katz JS, Dimachkie MM (2015) Patterns of weakness, classification of motor neuron disease, and clinical diagnosis of sporadic amyotrophic lateral sclerosis. Neurol Clin 33(4):735–748. https://doi.org/10.1016/j.ncl.2015.07.006

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chia R, Chiò A, Traynor BJ (2018) Novel genes associated with amyotrophic lateral sclerosis: diagnostic and clinical implications. Lancet Neurol 17(1). https://doi.org/10.1016/S1474-4422(17)30401-5

  3. Kiernan MC, Vucic S, Cheah BC, Turner MR, Eisen A, Hardiman O, Burrell JR, Zoing MC (2011) Amyotrophic lateral sclerosis. Lancet 377(9769):942–955. https://doi.org/10.1016/S0140-6736(10)61156-7

    Article  CAS  PubMed  Google Scholar 

  4. Menon P, Kiernan MC, Vucic S (2014) ALS pathophysiology: insights from the split-hand phenomenon. Clin Neurophysiol 125(1):186–193. https://doi.org/10.1016/j.clinph.2013.07.022

    Article  PubMed  Google Scholar 

  5. Dupuis L, Echaniz-Laguna A (2010) Skeletal muscle in motor neuron diseases: therapeutic target and delivery route for potential treatments. Curr Drug Targets 11(10):1250–1261. https://doi.org/10.2174/1389450111007011250

    Article  CAS  PubMed  Google Scholar 

  6. Picchiarelli G, Demestre M, Zuko A, Been M, Higelin J, Dieterlé S, Goy M-A, Mallik M et al (2019) FUS-mediated regulation of acetylcholine receptor transcription at neuromuscular junctions is compromised in amyotrophic lateral sclerosis. Nat Neurosci 22(11):1793–1805. https://doi.org/10.1038/s41593-019-0498-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhou B, Wang H, Cai Y, Wen H, Wang L, Zhu M, Chen Y, Yu Y et al (2020) FUS P525L mutation causing amyotrophic lateral sclerosis and movement disorders. Brain Behav 10(6):e01625. https://doi.org/10.1002/brb3.1625

    Article  PubMed  PubMed Central  Google Scholar 

  8. Farese RV, Walther TC (2009) Lipid droplets finally get a little R-E-S-P-E-C-T. Cell 139(5):855–860. https://doi.org/10.1016/j.cell.2009.11.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Angelini C, Nascimbeni AC, Cenacchi G, Tasca E (2016) Lipolysis and lipophagy in lipid storage myopathies. Biochim Biophys Acta 1862(7):1367–1373. https://doi.org/10.1016/j.bbadis.2016.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chaves-Filho AB, Pinto IFD, Dantas LS, Xavier AM, Inague A, Faria RL, Medeiros MHG, Glezer I et al (2019) Alterations in lipid metabolism of spinal cord linked to amyotrophic lateral sclerosis. Sci Rep 9(1):11642. https://doi.org/10.1038/s41598-019-48059-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Scaricamazza S, Salvatori I, Giacovazzo G, Loeffler JP, Renè F, Rosina M, Quessada C, Proietti D et al (2020) Skeletal-muscle metabolic reprogramming in ALS-SOD1 mice predates disease onset and is a promising therapeutic target. iScience 23(5):101087. https://doi.org/10.1016/j.isci.2020.101087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Deng J, Wang P, Chen X, Cheng H, Liu J, Fushimi K, Zhu L, Wu JY (2018) FUS interacts with ATP synthase beta subunit and induces mitochondrial unfolded protein response in cellular and animal models. Proc Natl Acad Sci U S A 115(41):E9678–E9686. https://doi.org/10.1073/pnas.1806655115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bollinger LM, Campbell MS, Brault JJ (2018) Palmitate and oleate co-treatment increases myocellular protein content via impaired protein degradation. Nutrition 46:41–43. https://doi.org/10.1016/j.nut.2017.07.017

    Article  CAS  PubMed  Google Scholar 

  14. Capel F, Cheraiti N, Acquaviva C, Hénique C, Bertrand-Michel J, Vianey-Saban C, Prip-Buus C, Morio B (2016) Oleate dose-dependently regulates palmitate metabolism and insulin signaling in C2C12 myotubes. Biochim Biophys Acta 1861(12 Pt A):2000–2010. https://doi.org/10.1016/j.bbalip.2016.10.002

    Article  CAS  PubMed  Google Scholar 

  15. Liu X, Chen J, Li X, Gao S, Deng M (2014) Generation of induced pluripotent stem cells from amyotrophic lateral sclerosis patientcarrying SOD1-V14M mutation. Zhonghua Yi Xue Za Zhi 94(27):2143–2147

    CAS  PubMed  Google Scholar 

  16. Deng J, Wu W, **e Z, Gang Q, Yu M, Liu J, Wang Q, Lv H et al (2019) Novel and recurrent mutations in a cohort of chinese patients with young-onset amyotrophic lateral sclerosis. Front Neurosci 13:1289. https://doi.org/10.3389/fnins.2019.01289

    Article  PubMed  PubMed Central  Google Scholar 

  17. Demontis F, Perrimon N (2010) FOXO/4E-BP signaling in Drosophila muscles regulates organism-wide proteostasis during aging. Cell 143(5):813–825. https://doi.org/10.1016/j.cell.2010.10.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. McGuire SE, Mao Z, Davis RL (2004) Spatiotemporal gene expression targeting with the TARGET and gene-switch systems in Drosophila. Sci STKE 2004(220):l6

    Article  Google Scholar 

  19. Ranganayakulu G, Zhao B, Dokidis A, Molkentin JD, Olson EN, Schulz RA (1995) A series of mutations in the D-MEF2 transcription factor reveal multiple functions in larval and adult myogenesis in Drosophila. Dev Biol 171(1):169–181

    Article  CAS  PubMed  Google Scholar 

  20. Deng J, Yang M, Chen Y, Chen X, Liu J, Sun S, Cheng H, Li Y et al (2015) FUS interacts with HSP60 to promote mitochondrial damage. PLoS Genet 11(9):e1005357. https://doi.org/10.1371/journal.pgen.1005357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li Y, Ray P, Rao EJ, Shi C, Guo W, Chen X, Woodruff EA, Fushimi K et al (2010) A Drosophila model for TDP-43 proteinopathy. Proc Natl Acad Sci U S A 107(7):3169–3174. https://doi.org/10.1073/pnas.0913602107

    Article  PubMed  PubMed Central  Google Scholar 

  22. Viscarra JA, Wang Y, Nguyen HP, Choi YG, Sul HS (2020) Histone demethylase JMJD1C is phosphorylated by mTOR to activate de novo lipogenesis. Nat Commun 11(1):796. https://doi.org/10.1038/s41467-020-14617-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang D, Zhai X, He X-j (2015) Application of oil red O staining in spinal cord injury of rats. Zhongguo Gu Shang 28(8):738–742

    PubMed  Google Scholar 

  24. Deng J, Yu J, Li P, Luan X, Cao L, Zhao J, Yu M, Zhang W et al (2020) Expansion of GGC repeat in GIPC1 is associated with oculopharyngodistal myopathy. Am J Hum Genet 106(6):793–804. https://doi.org/10.1016/j.ajhg.2020.04.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cykowski MD, Powell SZ, Appel JW, Arumanayagam AS, Rivera AL, Appel SH (2018) Phosphorylated TDP-43 (pTDP-43) aggregates in the axial skeletal muscle of patients with sporadic and familial amyotrophic lateral sclerosis. Acta Neuropathol Commun 6(1):28. https://doi.org/10.1186/s40478-018-0528-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dupuis L, Gonzalez de Aguilar J-L, Echaniz-Laguna A, Eschbach J, Rene F, Oudart H, Halter B, Huze C et al (2009) Muscle mitochondrial uncoupling dismantles neuromuscular junction and triggers distal degeneration of motor neurons. PLoS One 4(4):e5390. https://doi.org/10.1371/journal.pone.0005390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wong M, Martin LJ (2010) Skeletal muscle-restricted expression of human SOD1 causes motor neuron degeneration in transgenic mice. Hum Mol Genet 19(11):2284–2302. https://doi.org/10.1093/hmg/ddq106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Staunton L, Jockusch H, Ohlendieck K (2011) Proteomic analysis of muscle affected by motor neuron degeneration: the wobbler mouse model of amyotrophic lateral sclerosis. Biochem Biophys Res Commun 406(4):595–600. https://doi.org/10.1016/j.bbrc.2011.02.099

    Article  CAS  PubMed  Google Scholar 

  29. Chiang P-M, Ling J, Jeong YH, Price DL, Aja SM, Wong PC (2010) Deletion of TDP-43 down-regulates Tbc1d1, a gene linked to obesity, and alters body fat metabolism. Proc Natl Acad Sci U S A 107(37):16320–16324. https://doi.org/10.1073/pnas.1002176107

    Article  PubMed  PubMed Central  Google Scholar 

  30. Klivenyi P, Ferrante RJ, Matthews RT, Bogdanov MB, Klein AM, Andreassen OA, Mueller G, Wermer M et al (1999) Neuroprotective effects of creatine in a transgenic animal model of amyotrophic lateral sclerosis. Nat Med 5(3):347–350. https://doi.org/10.1038/6568

    Article  CAS  PubMed  Google Scholar 

  31. Kira Y, Nishikawa M, Ochi A, Sato E, Inoue M (2006) L-carnitine suppresses the onset of neuromuscular degeneration and increases the life span of mice with familial amyotrophic lateral sclerosis. Brain Res 1070(1):206–214. https://doi.org/10.1016/j.brainres.2005.11.052

    Article  CAS  PubMed  Google Scholar 

  32. Ivanova MI, Sievers SA, Guenther EL, Johnson LM, Winkler DD, Galaleldeen A, Sawaya MR, Hart PJ et al (2014) Aggregation-triggering segments of SOD1 fibril formation support a common pathway for familial and sporadic ALS. Proc Natl Acad Sci U S A 111 (1):197-201. doi:https://doi.org/10.1073/pnas.1320786110

  33. Verdin E, Hirschey MD, Finley LWS, Haigis MC (2010) Sirtuin regulation of mitochondria: energy production, apoptosis, and signaling. Trends Biochem Sci 35(12):669–675. https://doi.org/10.1016/j.tibs.2010.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bhat AH, Dar KB, Anees S, Zargar MA, Masood A, Sofi MA, Ganie SA (2015) Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight. Biomed Pharmacother 74:101–110. https://doi.org/10.1016/j.biopha.2015.07.025

    Article  CAS  PubMed  Google Scholar 

  35. Kwiatkowski TJ, Bosco DA, Leclerc AL, Tamrazian E, Vanderburg CR, Russ C, Davis A, Gilchrist J et al (2009) Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323(5918):1205–1208. https://doi.org/10.1126/science.1166066

    Article  CAS  PubMed  Google Scholar 

  36. Howland DS, Liu J, She Y, Goad B, Maragakis NJ, Kim B, Erickson J, Kulik J et al (2002) Focal loss of the glutamate transporter EAAT2 in a transgenic rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS). Proc Natl Acad Sci U S A 99(3):1604–1609. https://doi.org/10.1073/pnas.032539299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ruffoli R, Bartalucci A, Frati A, Fornai F (2015) Ultrastructural studies of ALS mitochondria connect altered function and permeability with defects of mitophagy and mitochondriogenesis. Front Cell Neurosci 9:341. https://doi.org/10.3389/fncel.2015.00341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Golpich M, Amini E, Mohamed Z, Azman Ali R, Mohamed Ibrahim N, Ahmadiani A (2017) Mitochondrial dysfunction and biogenesis in neurodegenerative diseases: pathogenesis and treatment. CNS Neurosci Ther 23(1). https://doi.org/10.1111/cns.12655

  39. Kodavati M, Wang H, Hegde ML (2020) Altered mitochondrial dynamics in motor neuron disease: an emerging perspective. Cells 9(4). https://doi.org/10.3390/cells9041065

  40. Zhou J, Li A, Li X, Yi J (2019) Dysregulated mitochondrial Ca and ROS signaling in skeletal muscle of ALS mouse model. Arch Biochem Biophys 663:249–258. https://doi.org/10.1016/j.abb.2019.01.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Petersen KF, Befroy D, Dufour S, Dziura J, Ariyan C, Rothman DL, DiPietro L, Cline GW et al (2003) Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science 300(5622):1140–1142. https://doi.org/10.1126/science.1082889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Carrière A, Carmona M-C, Fernandez Y, Rigoulet M, Wenger RH, Pénicaud L, Casteilla L (2004) Mitochondrial reactive oxygen species control the transcription factor CHOP-10/GADD153 and adipocyte differentiation: a mechanism for hypoxia-dependent effect. J Biol Chem 279(39):40462–40469. https://doi.org/10.1074/jbc.M407258200

    Article  CAS  PubMed  Google Scholar 

  43. Pu J, Ha CW, Zhang S, Jung JP, Huh W-K, Liu P (2011) Interactomic study on interaction between lipid droplets and mitochondria. Protein Cell 2(6):487–496. https://doi.org/10.1007/s13238-011-1061-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the patients and their families for cooperation. We thank Mr. Lijun Chai and Mr. ** Xu (Peking University First Hospital) for their work for electron microscopy pictures, and Ms. Yuehuan Zuo and Ms. Qiurong Zhang (Peking University First Hospital) for preparations of pathological sections.

Funding

This study was supported by funding from the National Natural Science Foundation of China (Grant Nos. 81371394, 81460199, 81540101, 31701004, and 82160252), Natural Science Foundation of Jiangxi province (20202BAB206029), Double thousand talents program of Jiangxi province (jxsq2019101021).

Author information

Authors and Affiliations

Authors

Contributions

ZB, DJ, LX, ZY, DH, ZY, ZM, and YY contributed to the acquisition and analysis of data. FX, ZM, and WZ performed the genetic analysis. YJ, ZW, and YY performed the pathological study. YY and WZ contributed to critical revision of the manuscript. ZB, DJ, and HD contributed to the study design and drafted the manuscript.

Corresponding authors

Correspondence to Zhaoxia Wang, Jianwen Deng or Daojun Hong.

Ethics declarations

Ethics Approval

The protocol was approved by the Ethics Committee of the First Affiliated Hospital of Nanchang University and the First Hospital of Peking University. All patients obtained informed consent to participate in the study.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplemental Fig. S1.

Cytotoxicity of Ctr, Wt, K510Q assessed by CTG assay. Cells were treated with Ctr, Wt or K510Q adenovirus for 48h and cell viability determined using the CellTiter-Glo assay. Values shown are mean ± SD of a representative experiment performed in sextuplicate (****: p<0.0001). (PNG 29 kb)

High resolution image (TIF 109 kb)

Supplemental Fig. S2.

Expression of FUS-K510Q causes lipid droplets accumulation. A Oil Red O staining of C2C12 cells without OA treatment. B The lipid droplet ratio was calculated using Image-Pro Plus software (****: p<0.0001). (PNG 1527 kb)

High resolution image (TIF 6755 kb)

Supplemental Fig. S3.

Expression of Ctr, Wt, K510Q causes disordered lipid metabolism. A Oil Red O staining of C2C12 cells under 0.25 mM OA treatment. B The lipid droplet ratio was measured and quantified using Image-Pro Plus software (**: p<0.01). (PNG 1096 kb)

High resolution image (TIF 4774 kb)

Expression of FUS-K510Q causes locomotor defects in flies at 35 days old. Fly genotypes: Ctr: Mef2-Gal4/Tub-Gal80ts/W1118; FUS-K510Q: Mef2-Gal4/Tub-Gal80ts/UAS-K510Q-FUS (MP4 1638 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, B., Zheng, Y., Li, X. et al. FUS Mutation Causes Disordered Lipid Metabolism in Skeletal Muscle Associated with ALS. Mol Neurobiol 59, 7265–7277 (2022). https://doi.org/10.1007/s12035-022-03048-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-03048-2

Keywords

Navigation