Log in

IGF-1 Gene Transfer Modifies Inflammatory Environment and Gene Expression in the Caudate-Putamen of Aged Female Rat Brain

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Brain aging is characterized by chronic neuroinflammation caused by activation of glial cells, mainly microglia, leading to alterations in homeostasis of the central nervous system. Microglial cells are constantly surveying their environment to detect and respond to diverse signals. During aging, microglia undergoes a process of senescence, characterized by loss of ramifications, spheroid formation, and fragmented processes, among other abnormalities. Therefore, the study of changes in microglia during is of great relevance to understand age‐related declines in cognitive and motor function. We have targeted the deleterious effects of aging by implementing IGF-1 gene transfer, employing recombinant adenoviral vectors (RAds) as a delivery system. In this study, we performed intracerebroventricular (ICV) RAd-IGF-1 or control injection on aged female rats and evaluated its effect on caudate-putamen unit (CPu) gene expression and inflammatory state. Our results demonstrate that IGF-1 overexpression modified aged microglia of the CPu towards an anti-inflammatory condition increasing the proportion of double immuno-positive Iba1+Arg1+ cells. We also observed that phosphorylation of Akt was increased in animals treated with RAd-IGF-1. Moreover, IGF-1 gene transfer was able to regulate CPu pro-inflammatory environment in female aged rats by down-regulating the expression of genes typically overexpressed during aging. RNA-Seq data analysis identified 97 down-modulated DEG in the IGF-1 group as compared to the DsRed one. Interestingly, 12 of these DEG are commonly overexpressed during aging, and 9 out of 12 are expressed in microglia/macrophages and are involved in different processes that lead to neuroinflammation and/or neuronal loss. Finally, we observed that IGF-1 overexpression led to an improvement in motor functions. Although further studies are necessary, with the present results, we conclude that IGF-1 gene transfer is modifying both the pro-inflammatory environment and activation of microglia/macrophages in CPu. In this regard, IGF-1 gene transfer could counteract the neuroinflammatory effects associated with aging and improve motor functions in senile animals.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

Arg1:

Arginase 1

CNS:

Central nervous system

CPu:

Caudate-putamen unit

DA:

Dopamine

DEGs:

Differentially expressed genes

DsRed:

Red fluorescent protein from Discosoma sp.

Iba1:

Ionized calcium-binding adapter molecule 1

IGF-1:

Insulin-like growth factor-1

ICV:

Intracerebroventricular

MB:

Marble burying

OF:

Open field

RAd:

Recombinant adenoviral vector

TH:

Tyrosine hydroxylase

References

  1. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153(6):1194–1217. https://doi.org/10.1016/j.cell.2013.05.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Di Benedetto S, Müller L, Wenger E, Düzel S, Pawelec G (2017) Contribution of neuroinflammation and immunity to brain aging and the mitigating effects of physical and cognitive interventions. Neurosci Biobehav Rev 75:114–128. https://doi.org/10.1016/j.neubiorev.2017.01.044

    Article  PubMed  Google Scholar 

  3. Bassani TB, Vital MABF, Rauh LK (2015) Neuroinflammation in the pathophysiology of Parkinson’s disease and therapeutic evidence of anti-inflammatory drugs. Arq Neuropsiquiatr 73(7):616–623. https://doi.org/10.1590/0004-282X20150057

    Article  PubMed  Google Scholar 

  4. Orihuela R, McPherson CA, Harry GJ (2016) Microglial M1/M2 polarization and metabolic states. Br J Pharmacol 173(4):649–665. https://doi.org/10.1111/bph.13139

    Article  CAS  PubMed  Google Scholar 

  5. Elward K, Gasque P (2003) ‘Eat me’ and ‘don’t eat me’ signals govern the innate immune response and tissue repair in the CNS: emphasis on the critical role of the complement system. Mol Immunol 40(2–4):85–94. https://doi.org/10.1016/S0161-5890(03)00109-3

    Article  CAS  PubMed  Google Scholar 

  6. Harry GJ (2013) Microglia during development and aging. Pharmacol Ther 139(3):313–326. https://doi.org/10.1016/j.pharmthera.2013.04.013.Microglia

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Streit WJ, Sammons NW, Kuhns AJ, Sparks DL (2004) Dystrophic microglia in the aging human brain. Glia 45(2):208–212. https://doi.org/10.1002/glia.10319

    Article  PubMed  Google Scholar 

  8. Streit W, Xue Q-S (2013) Microglial senescence. CNS Neurol Disord - Drug Targets 12(6):763–767. https://doi.org/10.2174/18715273113126660176

    Article  CAS  PubMed  Google Scholar 

  9. Suh H-S, Zhao M-L, Derico L, Choi N, Lee SC (2013) Insulin-like growth factor 1 and 2 (IGF1, IGF2) expression in human microglia: differential regulation by inflammatory mediators. J Neuroinflammation 10(1):805. https://doi.org/10.1186/1742-2094-10-37

    Article  CAS  Google Scholar 

  10. Acaz-Fonseca E, Duran JC, Carrero P, Garcia-Segura LM, Arevalo MA (2015) Sex differences in glia reactivity after cortical brain injury. Glia 63(11):1966–1981. https://doi.org/10.1002/glia.22867

    Article  PubMed  Google Scholar 

  11. Labandeira-Garcia JL, Costa-Besada MA, Labandeira CM, Villar-Cheda B, Rodríguez-Perez AI (2017) Insulin-like growth factor-1 and neuroinflammation. Front Aging Neurosci 9 NOV. Frontiers Media S.A. https://doi.org/10.3389/fnagi.2017.00365

  12. Bellini MJ, Hereñú CB, Goya RG, Garcia-Segura LM (2011) Insulin-like growth factor-I gene delivery to astrocytes reduces their inflammatory response to lipopolysaccharide. J Neuroinflammation 8:21. https://doi.org/10.1186/1742-2094-8-21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Piriz J, Muller A, Trejo JL, Torres-Aleman I (2011) IGF-I and the aging mammalian brain. Exp Gerontol 46(2–3):96–99. https://doi.org/10.1016/j.exger.2010.08.022

    Article  CAS  PubMed  Google Scholar 

  14. Torres Aleman I (2012) Insulin-like growth factor-1 and central neurodegenerative diseases. Endocrinol Metab Clin North Am 41(2):395–408. https://doi.org/10.1016/j.ecl.2012.04.016

    Article  CAS  PubMed  Google Scholar 

  15. Morel GR, León ML, Uriarte M, Reggiani PC, Goya RG (2017) Therapeutic potential of IGF-I on hippocampal neurogenesis and function during aging. Neurogenesis 4(1):e1259709. https://doi.org/10.1080/23262133.2016.1259709

    Article  CAS  PubMed  Google Scholar 

  16. Deak F, Sonntag WE (2012) Aging, synaptic dysfunction, and insulin-like growth factor (IGF)-1. J Gerontol - Ser A Biol Sci Med Sci 67A(6):611–625. https://doi.org/10.1093/gerona/gls118

    Article  CAS  Google Scholar 

  17. Falomir-Lockhart E, Dolcetti FJC, García-Segura LM, Hereñú CB, Bellini MJ (2019) IGF1 Gene Therapy modifies microglia in the striatum of senile rats. Front Aging Neurosci 11(March):1–6. https://doi.org/10.3389/fnagi.2019.00048

    Article  CAS  Google Scholar 

  18. Herrera ML, Basmadjian OM, Falomir-Lockhart E, Dolcetti FJC, Hereñú CB, Bellini MJ (2020) Sex frailty differences in ageing mice: neuropathologies and therapeutic projections. Eur J Neurosci 52(1):2827–2837. https://doi.org/10.1111/ejn.14703

    Article  PubMed  Google Scholar 

  19. Breese CR et al (1996) Expression of insulin-like growth factor-1 (IGF-1) and IGF-binding protein 2 (IGF-BP2) in the hippocampus following cytotoxic lesion of the dentate gyrus. J Comp Neurol 369(3):388–404. https://doi.org/10.1002/(SICI)1096-9861(19960603)369:3%3c388::AID-CNE5%3e3.0.CO;2-1

    Article  CAS  PubMed  Google Scholar 

  20. Genis L, Dávila D, Fernandez S, Pozo-Rodrigálvarez A, Martínez-Murillo R, Torres-Aleman I (2014) Astrocytes require insulin-like growth factor I to protect neurons against oxidative injury. F1000Research 3: 28. https://doi.org/10.12688/f1000research.3-28.v2

  21. Hereñú CB, Sonntag WE, Morel GR, Portiansky EL, Goya RG (2009) The ependymal route for insulin-like growth factor-1 gene therapy in the brain. Neuroscience 163(1):442–447. https://doi.org/10.1016/j.neuroscience.2009.06.024

    Article  CAS  PubMed  Google Scholar 

  22. Hereñú CB et al (2007) Restorative effect of insulin-like growth factor-I gene therapy in the hypothalamus of senile rats with dopaminergic dysfunction. Gene Ther 14(3):237–245. https://doi.org/10.1038/sj.gt.3302870

    Article  CAS  PubMed  Google Scholar 

  23. Pardo J et al (2016) Insulin-like growth factor-I gene therapy increases hippocampal neurogenesis, astrocyte branching and improves spatial memory in female aging rats. Eur J Neurosci 44(4):2120–2128. https://doi.org/10.1111/ejn.13278

    Article  PubMed  Google Scholar 

  24. Nishida F, Morel GR, Hereñú CB, Schwerdt JI, Goya RG, Portiansky EL (2011) Restorative effect of intracerebroventricular insulin-like growth factor-I gene therapy on motor performance in aging rats. Neuroscience 177:195–206. https://doi.org/10.1016/j.neuroscience.2011.01.013

    Article  CAS  PubMed  Google Scholar 

  25. Stark AK, Pakkenberg B (2004) Histological changes of the dopaminergic nigrostriatal system in aging. Cell Tissue Res 318(1):81–92. https://doi.org/10.1007/s00441-004-0972-9

    Article  CAS  PubMed  Google Scholar 

  26. Alladi PA, Mahadevan A, Yasha TC, Raju TR, Shankar SK, Muthane U (2009) Absence of age-related changes in nigral dopaminergic neurons of Asian Indians: relevance to lower incidence of Parkinson’s disease. Neuroscience 159(1):236–245. https://doi.org/10.1016/j.neuroscience.2008.11.051

    Article  CAS  PubMed  Google Scholar 

  27. Parkinson GM, Dayas CV, Smith DW (2015) Age-related gene expression changes in substantia nigra dopamine neurons of the rat. Mech Ageing Dev 149:41–49. https://doi.org/10.1016/j.mad.2015.06.002

    Article  CAS  PubMed  Google Scholar 

  28. Carlsson A, Winblad B (1976) Influence of age and time interval between death and autopsy on dopamine and 3-methoxytyramine levels in human basal ganglia. J Neural Transm 38(3–4):271–276. https://doi.org/10.1007/bf01249444

    Article  CAS  PubMed  Google Scholar 

  29. Morgan DG, Finch CE (1988) Dopaminergic changes in the basal ganglia. A generalized phenomenon of aging in mammals. Ann N Y Acad Sci 515(1):145–160. https://doi.org/10.1111/j.1749-6632.1988.tb32978.x

    Article  CAS  PubMed  Google Scholar 

  30. Umegaki H, Roth GS, Ingram DK (2008) Aging of the striatum: mechanisms and interventions. Age (Omaha) 30(4):251–261. https://doi.org/10.1007/s11357-008-9066-z

    Article  Google Scholar 

  31. Joseph JA, Roth GS (1988) Upregulation of striatal dopamine receptors and improvement of motor performance in senescence. Ann N Y Acad Sci 515(1):355–362. https://doi.org/10.1111/j.1749-6632.1988.tb33008.x

    Article  CAS  PubMed  Google Scholar 

  32. G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates, 6th ed. Amsterdam: Academic Press, 2007.

  33. Poling A, Cleary J, Monaghan M (1981) Burying by rats in response to aversive and nonaversive stimulI. J Exp Anal Behav 35(1):31–44. https://doi.org/10.1901/jeab.1981.35-31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Thomas A, Burant A, Bui N, Graham D, Yuva-Paylor LA, Paylor R (2009) Marble burying reflects a repetitive and perseverative behavior more than novelty-induced anxiety. Psychopharmacology 204(2):361–373. https://doi.org/10.1007/s00213-009-1466-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. de Brouwer G, Fick A, Harvey BH, Wolmarans DW (2019) A critical inquiry into marble-burying as a preclinical screening paradigm of relevance for anxiety and obsessive–compulsive disorder: map** the way forward, Cognitive, Affective and Behavioral Neuroscience, vol. 19, no. 1. Springer New York LLC https://doi.org/10.3758/s13415-018-00653-4

  36. Deacon RMJ (2006) Digging and marble burying in mice: simple methods for in vivo identification of biological impacts. Nat Protoc 1(1):122–124. https://doi.org/10.1038/nprot.2006.20

    Article  CAS  PubMed  Google Scholar 

  37. von Bohlen und Halbach O (2013) Analysis of morphological changes as a key method in studying psychiatric animal models. Cell Tissue Res 354(1):41–50. https://doi.org/10.1007/s00441-012-1547-9

    Article  Google Scholar 

  38. Kim D, Paggi JM, Park C, Bennett C, Salzberg SL (2019) Graph-based genome alignment and genoty** with HISAT2 and HISAT-genotype. Nat Biotechnol 37(8):907–915. https://doi.org/10.1038/s41587-019-0201-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liao Y, Smyth GK, Shi W (2019) The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Res 47(8). https://doi.org/10.1093/nar/gkz114

  40. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550. https://doi.org/10.1186/s13059-014-0550-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mlecnik B, Galon J, Bindea G (2018) Comprehensive functional analysis of large lists of genes and proteins. J Proteomics 171:2–10. https://doi.org/10.1016/j.jprot.2017.03.016

    Article  CAS  PubMed  Google Scholar 

  42. de Magalhães JP, Curado J, Church GM (2009) Meta-analysis of age-related gene expression profiles identifies common signatures of aging. Bioinformatics 25(7):875–881. https://doi.org/10.1093/bioinformatics/btp073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fernandez AM, de la Vega AG, Torres-Aleman I (1998) Insulin-like growth factor I restores motor coordination in a rat model of cerebellar ataxia. Proc Natl Acad Sci U S A 95(3):1253–1258. https://doi.org/10.1073/pnas.95.3.1253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Guan J et al (1999) Selective neuroprotective effects with insulin-like growth factor-1 in phenotypic striatal neurons following ischemic brain injury in fetal sheep. Neuroscience 95(3):831–839. https://doi.org/10.1016/S0306-4522(99)00456-X

    Article  Google Scholar 

  45. Nishida, F., Zanuzzi, C. N., Sisti, M. S., Falomir Lockhart, E., Camiña, A. E., Hereñú, C. B., Bellini, M. J., & Portiansky, E. L. (2020). Intracisternal IGF-1 gene therapy abrogates kainic acid-induced excitotoxic damage of the rat spinal cord. The European journal of neuroscience, 52(5), 3339–3352. https://doi.org/10.1111/ejn.14876

  46. Konsolaki E, Tsakanikas P, Polissidis AV, Stamatakis A, Skaliora I (2016) Early signs of pathological cognitive aging in mice lacking high-affinity nicotinic receptors. Front Aging Neurosci 8(APR):91. https://doi.org/10.3389/fnagi.2016.00091

    Article  PubMed  PubMed Central  Google Scholar 

  47. Norden DM, Godbout JP (2013) Review: microglia of the aged brain: primed to be activated and resistant to regulation. Neuropathol Appl Neurobiol 39(1). NIH Public Access, 19–34. https://doi.org/10.1111/j.1365-2990.2012.01306.x

  48. Yang Z, Ming X-F (2014) Functions of arginase isoforms in macrophage inflammatory responses: impact on cardiovascular diseases and metabolic disorders. Front Immunol 5:533. https://doi.org/10.3389/fimmu.2014.00533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shi Q et al (2017) Complement C3 deficiency protects against neurodegeneration in aged plaque-rich APP/PS1 mice. Sci Transl Med 9(392). https://doi.org/10.1126/scitranslmed.aaf6295

  50. Luchena C, Zuazo-Ibarra J, Alberdi E, Matute C, Capetillo-Zarate E. Contribution of Neurons and Glial Cells to Complement-Mediated Synapse Removal during Development, Aging and in Alzheimer's Disease [published correction appears in Mediators Inflamm. 2019 Jan 29;2019:7539620]. Mediators Inflamm. 2018;2018:2530414. Published 2018 Nov 11. https://doi.org/10.1155/2018/2530414

  51. Crehan, H., Hardy, J., & Pocock, J. (2012). Microglia, Alzheimer's disease, and complement. International journal of Alzheimer's disease, 2012, 983640. https://doi.org/10.1155/2012/983640

  52. Miao Q, Ge M, Huang L (2017) Up-regulation of GBP2 is associated with neuronal apoptosis in rat brain cortex following traumatic brain injury. Neurochem Res 42(5):1515–1523. https://doi.org/10.1007/s11064-017-2208-x

    Article  CAS  PubMed  Google Scholar 

  53. Zeiner PS et al (2015) MIF receptor CD74 is restricted to microglia/macrophages, associated with a m1-polarized immune milieu and prolonged patient survival in gliomas. Brain Pathol 25(4):491–504. https://doi.org/10.1111/bpa.12194

    Article  CAS  PubMed  Google Scholar 

  54. ** C et al (2021) A unique type of highly-activated microglia evoking brain inflammation via Mif/Cd74 signaling axis in aged mice. Aging Dis 12(8): 2125–2139, Accessed: Nov. 24, 2021. [Online]. Available: https://doi.org/10.14336/AD.2021.0520

  55. Fillman SG, Cloonan N, Miller LC, Weickert CS (2013) Markers of inflammation in the prefrontal cortex of individuals with schizophrenia. Mol Psychiatry 18(2). Nature Publishing Group 133. https://doi.org/10.1038/mp.2012.199

  56. Zhao J, Xu C, Cao H, Zhang L, Wang X, Chen S (2019) Identification of target genes in neuroinflammation and neurodegeneration after traumatic brain injury in rats. PeerJ 2019(12):e8324. https://doi.org/10.7717/peerj.8324

    Article  CAS  Google Scholar 

  57. Lively S, Schlichter LC (2018) Microglia responses to pro-inflammatory stimuli (LPS, IFNγ+TNFα) and reprogramming by resolving cytokines (IL-4, IL-10). Front Cell Neurosci 12:215. https://doi.org/10.3389/FNCEL.2018.00215/BIBTEX

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ludwig A et al (2005) Enhanced expression and shedding of the transmembrane chemokine CXCL16 by reactive astrocytes and glioma cells. J Neurochem 93(5):1293–1303. https://doi.org/10.1111/J.1471-4159.2005.03123.X/FORMAT/PDF

    Article  CAS  PubMed  Google Scholar 

  59. Trettel F, Di Castro MA, Limatola C (2020) Chemokines: key molecules that orchestrate communication among neurons, microglia and astrocytes to preserve brain function. Neuroscience 439:230–240. https://doi.org/10.1016/J.NEUROSCIENCE.2019.07.035

    Article  CAS  PubMed  Google Scholar 

  60. Xu H, Jia J (2020) Immune-related hub genes and the competitive endogenous RNA network in alzheimer’s disease. J Alzheimers Dis 77(3):1255–1265. https://doi.org/10.3233/JAD-200081

    Article  CAS  PubMed  Google Scholar 

  61. Berger AH et al (2021) Transcriptional changes in regulatory t cells from patients with autoimmune polyendocrine syndrome type 1 suggest functional impairment of lipid metabolism and gut homing. Front Immunol 12:3489. https://doi.org/10.3389/FIMMU.2021.722860/BIBTEX

    Article  Google Scholar 

  62. Brumell J, Howard K, Grinstain S, Schreuber A, Tyers M (1999) Expression of the protein kinase c substrate pleckstrin in macrophages: association with phagosomal membranes | The Journal of Immunology. J Immunol 3388–3395

  63. Wood SH, Craig T, Li Y, Merry B, De Magalhães JP (2013) Whole transcriptome sequencing of the aging rat brain reveals dynamic RNA changes in the dark matter of the genome. Age (Omaha) 35(3):763–776. https://doi.org/10.1007/s11357-012-9410-1

    Article  CAS  Google Scholar 

  64. Di Castro MA, Trettel F, Milior G, Maggi L, Ragozzino D, Limatola C (2016) The chemokine CXCL16 modulates neurotransmitter release in hippocampal CA1 area. Sci Rep 6. https://doi.org/10.1038/srep34633

Download references

Acknowledgements

We thank Natalia Scelsio, Jana Weiβ-Müller, and Robin Piecha for technical assistance, to Araceli Bigres for animal management, as well as to Dr. Andrea Pereyra for English revision assistance. We acknowledge IBRO and Boehringer Ingelheim Fonds support on EF-L’s short stays in Germany.

Funding

This study was supported by grants from the Argentine Agency for the Promotion of Science and Technology (grant number #PICT13-1119) and the Argentine Research Council (CONICET) (grant number PIP0618) to MJB, grants from the Universidad Nacional de La Plata (grant number M184 to CH and V270 to EP) and grant from the Deutsche Forschungsgemeinschaft (DFG) (grant number SP 1555/2–1) to BS.

Author information

Authors and Affiliations

Authors

Contributions

EF-L, CH, and MJB designed the experiments. EF-L, FJCD, JP, and MFVZ performed the experiments. GS performed the RNAseq. EL performed the analysis of the RNAseq. EF-L, FJCD, MLH, EP, EL, and MJB analyzed the data. EF-L, MLH, EL, BS, EP, and MJB wrote the manuscript. All authors have commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Claudia Beatriz Hereñú or María José Bellini.

Ethics declarations

Ethics Approval

All experiments with animals have been approved by our institutional Committee for the Care and Use of Laboratory Animals (Protocol #T09-01–2013).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 477 KB)

Supplementary file2 (XLSX 46 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falomir-Lockhart, E., Dolcetti, F.J.C., Herrera, M.L. et al. IGF-1 Gene Transfer Modifies Inflammatory Environment and Gene Expression in the Caudate-Putamen of Aged Female Rat Brain. Mol Neurobiol 59, 3337–3352 (2022). https://doi.org/10.1007/s12035-022-02791-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-02791-w

Keywords

Navigation