Log in

MiR-126-3p-Enriched Extracellular Vesicles from Hypoxia-Preconditioned VSC 4.1 Neurons Attenuate Ischaemia-Reperfusion-Induced Pain Hypersensitivity by Regulating the PIK3R2-Mediated Pathway

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Recent evidence suggests that hypoxia preconditioning can alter the microRNA (miRNA) profile of extracellular vesicles (EVs) and has better neuroprotective effects when enriched miRs are delivered to recipients. However, the roles of exosomal miRNAs in regulating ischaemia-reperfusion (IR)-induced pain hypersensitivity are largely unknown. Thus, we isolated EVs from normoxia-conditioned neurons (Nor-VSC EVs) and Hypo-VSC EVs by ultracentrifugation. After the initial screening by a microarray analysis and quantitative RT-PCR (qRT-PCR), miR-126-3p, which was detected as the most altered miR in the Hypo-VSC EVs, was further confirmed by applying GW4869 to inhibit exosomal secretion. Moreover, transfection with a miR-126 mimic obviously increased miR-126-3p expression in Nor-VSC EVs, whereas a miR-126 inhibitor prevented the increase in miR-126-3p in Hypo-VSC EVs. A rat model of pain was established by performing 8-min occlusion of the aorta. Following IR, compared with the Nor-VSC EVs- or antagomir-126-injected rats, the Hypo-VSC EVs-injected rats displayed improved pain hypersensitivity demonstrated as higher PWT and PWL values. Mechanistically, PIK3R2 is a target of miR-126-3p and might be a modulator of the phosphoinositide 3-kinase (PI3K)/Akt pathway as the PIK3R2 and PI3K immunoreactivities in each group were changed in opposite directions. Compared with the controls, higher protein levels of PI3K and phosphorylated Akt but lower levels of phosphorylated nuclear factor-κ B (NF-κB), tumour necrosis factor (TNF)-α and interleukin (IL)-1β were detected in the spinal cords of the Hypo-VSC EVs-injected rats, and these effects were impaired by an injection of Hypo-VSC EVs combined with antagomir-126. Collectively, the miR-126-3p-enriched Hypo-VSC EVs attenuated IR-induced pain hypersensitivity by restoring miR-126-3p expression in the injured spinal cord and subsequently modulating PIK3R2-mediated PI3K/Akt and NF-κB signalling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets used in this study are available from the corresponding author upon reasonable request.

Abbreviations

antagomir-126:

miR-126 antagomir

DMEM:

Dulbecco’s modified Eagle’s medium

EVs:

Extracellular vesicles

FBS:

Foetal bovine serum

FISH:

Fluorescence in situ hybridization

GM:

Golgi auto-antigen

HBSS:

Hank’s balanced salt solution

Hypo-VSC EVs:

Hypoxia-preconditioned neurons-derived extracellular vesicles

IL:

Interleukin

IR:

Ischaemia-reperfusion

miR:

microRNA

MSC-Exos:

Mesenchymal stem cell-derived exosomes

MT:

Mutant

NTA:

Nanoparticle tracking analysis

NC:

Negative control

NF-κB:

Nuclear factor-kappa B

Nor-VSC EVs:

Normoxia-conditioned neuron-derived extracellular vesicles

OGD/R:

Oxygen-glucose deprivation and reperfusion

p-Akt:

Phosphorylation of Akt

PI3K:

Phosphatidylinositol 3-kinase

PIK3R2:

Phosphoinositide-3-kinase regulatory subunit

PI3K:

Phosphoinositide 3-kinase

p-NF-κB:

Phosphorylated NF-κB

t-Akt:

Total Akt

TEM:

Transmission electron microscopy

t-NF-κB:

Total NF-κB

References

  1. Awad H, Ramadan ME, El Sayed HF, Tolpin DA, Tili E, Collard CD (2017) Spinal cord injury after thoracic endovascular aortic aneurysm repair. Can J Anaesth 64(12):1218–1235. https://doi.org/10.1007/s12630-017-0974-1

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hu J, Yu Q, **e L, Zhu H (2016) Targeting the blood-spinal cord barrier: a therapeutic approach to spinal cord protection against ischemia-reperfusion injury. Life Sci 158:1–6. https://doi.org/10.1016/j.lfs.2016.06.018

    Article  CAS  PubMed  Google Scholar 

  3. Yu Q, Huang J, Hu J, Zhu H (2016) Advance in spinal cord ischemia reperfusion injury: blood-spinal cord barrier and remote ischemic preconditioning. Life Sci 154:34–38. https://doi.org/10.1016/j.lfs.2016.03.046

    Article  CAS  PubMed  Google Scholar 

  4. Li XQ, Zhang ZL, Tan WF, Sun XJ, Ma H (2016) Down-regulation of CXCL12/CXCR4 expression alleviates ischemia- reperfusion- induced inflammatory pain via inhibiting glial TLR4 activation in the spinal cord. PLoS One 11(10):e0163807. https://doi.org/10.1371/journal.pone.0163807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li XQ, Yu Q, Tan WF, Zhang ZL, Ma H (2018) MicroRNA-125b mimic inhibits ischemia reperfusion-induced neuroinflammation and aberrant p53apoptotic signalling activation through targeting TP53INP1. Brain Behav Immun 74:154–165. https://doi.org/10.1016/j.bbi.2018.09.002

    Article  CAS  PubMed  Google Scholar 

  6. Werhagen L, Budh CN, Hultling C, Molander C (2004) Neuropathic pain after traumatic spinal cord injury--relations to gender, spinal level, completeness, and age at the time of injury. Spinal Cord 42(12):665–673. https://doi.org/10.1038/sj.sc.3101641

    Article  CAS  PubMed  Google Scholar 

  7. Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R et al (2018) Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 7(1):1535750. https://doi.org/10.1080/20013078.2018.1535750

    Article  PubMed  PubMed Central  Google Scholar 

  8. Jadli AS, Ballasy N, Edalat P, Patel VB (2020) Inside (sight) of tiny communicator: exosome biogenesis, secretion, and uptake. Mol Cell Biochem 467(1–2):77–94. https://doi.org/10.1007/s11010-020-03703-z

    Article  CAS  PubMed  Google Scholar 

  9. McDonald MK, Tian Y, Qureshi RA, Gormley M, Ertel A, Gao R, Aradillas Lopez E, Alexander GM et al (2014) Functional significance of macrophage-derived exosomes in inflammation and pain. Pain 155(8):1527–1539. https://doi.org/10.1016/j.pain.2014.04.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shiue SJ, Rau RH, Shiue HS, Hung YW, Li ZX, Yang KD, Cheng JK (2019) Mesenchymal stem cell exosomes as a cell-free therapy for nerve injury-induced pain in rats. Pain 160(1):210–223. https://doi.org/10.1097/j.pain.0000000000001395

    Article  CAS  PubMed  Google Scholar 

  11. Ren J, Liu N, Sun N, Zhang K, Yu L (2019) Mesenchymal stem cells and their exosomes: promising therapeutics for chronic pain. Curr Stem Cell Res Ther 14(8):644–653. https://doi.org/10.2174/1574888X14666190912162504

    Article  CAS  PubMed  Google Scholar 

  12. Li XQ, Yu Q, Zhang ZL, Sun XJ, Ma H (2019) MiR-187-3p mimic alleviates ischemia-reperfusion-induced pain hypersensitivity through inhibiting spinal P2X7R and subsequent mature IL-1ß release in mice. Brain Behav Immun 79:91–101. https://doi.org/10.1016/j.bbi.2019.05.021

    Article  CAS  PubMed  Google Scholar 

  13. Xu J, Tang Y, **e M, Bie B, Wu J, Yang H, Foss JF, Yang B et al (2016) Activation of cannabinoid receptor 2 attenuates mechanical allodynia and neuroinflammatory responses in a chronic post-ischemic pain model of complex regional pain syndrome type I in rats. Eur J Neurosci 44(12):3046–3055. https://doi.org/10.1111/ejn.13414

    Article  PubMed  Google Scholar 

  14. Chen O, Donnelly CR, Ji RR (2019) Regulation of pain by neuro-immune interactions between macrophages and nociceptor sensory neurons. Curr Opin Neurobiol 62:17–25. https://doi.org/10.1016/j.conb.2019.11.006

    Article  CAS  PubMed  Google Scholar 

  15. Lin Y, Chen Z, Tang J, Cao P, Shi R (2018) Acrolein contributes to the neuropathic pain and neuron damage after ischemic-reperfusion spinal cord injury. Neuroscience 384:120–130. https://doi.org/10.1016/j.neuroscience.2018.05.029

    Article  CAS  PubMed  Google Scholar 

  16. Dalbayrak S, Yaman O, Yilmaz T (2015) Current and future surgery strategies for spinal cord injuries. World J Orthop 6(1):34–41. https://doi.org/10.5312/wjo.v6.i1.34

    Article  PubMed  PubMed Central  Google Scholar 

  17. Goetzl EJ, Ledreux A, Granholm AC, Elahi FM, Goetzl L, Hiramoto J, Kapogiannis D (2019) Neuron-derived exosome proteins may contribute to progression from repetitive mild traumatic brain injuries to chronic traumatic encephalopathy. Front Neurosci 13:452. https://doi.org/10.3389/fnins.2019.00452

    Article  PubMed  PubMed Central  Google Scholar 

  18. Goetzl EJ, Elahi FM, Mustapic M, Kapogiannis D, Pryhoda M, Gilmore A, Gorgens KA, Davidson B et al (2019) Altered levels of plasma neuron-derived exosomes and their cargo proteins characterize acute and chronic mild traumatic brain injury. FASEB J 33(4):5082–2088. https://doi.org/10.1096/fj.201802319R

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hill AF, Pegtel DM, Lambertz U, Leonardi T, O'Driscoll L, Pluchino S, Ter-Ovanesyan D (2013) ISEV position paper: extracellular vesicle RNA analysis and bioinformatics. J Extracell Vesicles;2. doi: https://doi.org/10.3402/jev.v2i0.22859.

  20. Yin Z, Han Z, Hu T, Zhang S, Ge X, Huang S, Wang L, Yu J et al (2020) Neuron-derived exosomes with high miR-21-5p expression promoted polarization of M1 microglia in culture. Brain Behav Immun 83:270–282. https://doi.org/10.1016/j.bbi.2019.11.004

    Article  CAS  PubMed  Google Scholar 

  21. Song H, Zhang X, Chen R, Miao J, Wang L, Cui L, Ji H, Liu Y (2019) Cortical neuron-derived exosomal microRNA-181c-3p inhibits neuroinflammation by downregulating CXCL1 in astrocytes of a rat model with ischemic brain injury. Neuroimmunomodulation 26(5):217–233. https://doi.org/10.1159/000502694

    Article  CAS  PubMed  Google Scholar 

  22. ** T, ** F, Zhu Y, Wang J, Tang L, Wang Y, Liebeskind DS, He Z (2017) MicroRNA-126-3p attenuates blood-brain barrier disruption, cerebral edema and neuronal injury following intracerebral hemorrhage by regulating PIK3R2 and Akt. Biochem Biophys Res Commun 494(1–2):144–151. https://doi.org/10.1016/j.bbrc.2017.10.064

    Article  CAS  PubMed  Google Scholar 

  23. Hu J, Zeng L, Huang J, Wang G, Lu H (2015) miR-126 promotes angiogenesis and attenuates inflammation after contusion spinal cord injury in rats. Brain Res 1608:191–202. https://doi.org/10.1016/j.brainres.2015.02.036

    Article  CAS  PubMed  Google Scholar 

  24. Yuan Y, Shen C, Zhao SL, Hu YJ, Song Y, Zhong QJ (2019) MicroRNA-126 affects cell apoptosis, proliferation, cell cycle and modulatesVEGF/TGF-β levels in pulmonary artery endothelial cells. Eur Rev Med Pharmacol Sci 23(7):3058–3069. https://doi.org/10.26355/eurrev_201904_17588

    Article  CAS  PubMed  Google Scholar 

  25. McDonald MK, Ajit SK (2015) MicroRNA biology and pain. Prog Mol Biol Transl Sci 131:215–249. https://doi.org/10.1016/bs.pmbts.2014.11.015

    Article  PubMed  Google Scholar 

  26. Zhou X, He Y, Jiang Y, He B, Deng X, Zhang Z, Yuan X, Li J (2019) MiR-126-3p inhibits apoptosis and promotes proliferation by targetingPIK3R2 in porcine ovarian granulosa cells. Asian Australas J Anim Sci 33:879–887. https://doi.org/10.5713/ajas.19.0290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Patel DB, Gray KM, Santharam Y, Lamichhane TN, Stroka KM, Jay SM (2017) Impact of cell culture parameters on production and vascularization bioactivity of mesenchymal stem cell-derived extracellular vesicles. Bioeng Transl Med 2(2):170–179. https://doi.org/10.1002/btm2.10065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Almeria C, Weiss R, Roy M, Tripisciano C, Kasper C, Weber V, Egger D (2019) Hypoxia conditioned mesenchymal stem cell-derived extracellular vesicles induce increased vascular tube formation in vitro. Front Bioeng Biotechnol 7:292. https://doi.org/10.3389/fbioe.2019.00292

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kilic T, Valinhas ATS, Wall I, Renaud P, Carrara S (2018) Label-free detection of hypoxia-induced extracellular vesicle secretion from MCF-7 cells. Sci Rep 8(1):9402. https://doi.org/10.1038/s41598-018-27203-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yu X, Deng L, Wang D, Li N, Chen X, Cheng X, Yuan J, Gao X et al (2012) Mechanism of TNF-α autocrine effects in hypoxic cardiomyocytes: initiated by hypoxia inducible factor 1α, presented by exosomes. J Mol Cell Cardiol 53(6):848–857. https://doi.org/10.1016/j.yjmcc.2012.10.002

    Article  CAS  PubMed  Google Scholar 

  31. Zhu LP, Tian T, Wang JY, He JN, Chen T, Pan M, Xu L, Zhang HX et al (2018) Hypoxia-elicited mesenchymal stem cell-derived exosomes facilitates cardiac repair through miR-125b-mediated prevention of cell death in myocardial infarction. Theranostics 8(22):6163–6177. https://doi.org/10.7150/thno.28021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gray WD, French KM, Ghosh-Choudhary S, Maxwell JT, Brown ME, Platt MO, Searles CD, Davis ME (2015) Identification of therapeutic covariant microRNA clusters in hypoxia-treated cardiacprogenitor cell exosomes using systems biology. Circ Res 116(2):255–263. https://doi.org/10.1161/CIRCRESAHA.116.304360

    Article  CAS  PubMed  Google Scholar 

  33. Gabbouj S, Ryhänen S, Marttinen M, Wittrahm R, Takalo M, Kemppainen S, Martiskainen H, Tanila H et al (2019) Altered insulin signaling in Alzheimer’s disease brain-special emphasis on PI3K-Akt pathway. Front Neurosci 13:629. https://doi.org/10.3389/fnins.2019.00629

    Article  PubMed  PubMed Central  Google Scholar 

  34. Yuan B, Pan S, Dong YQ, Zhang WW, He XD (2020) Effect of exosomes derived from mir-126-modified mesenchymal stem cells on the repair process of spinal cord injury in rats. Eur Rev Med Pharmacol Sci 24(2):483–490. https://doi.org/10.26355/eurrev_202001_20025

    Article  CAS  PubMed  Google Scholar 

  35. Zhao L, Jiang X, Shi J, Gao S, Zhu Y, Gu T, Shi E (2019) Exosomes derived from bone marrow mesenchymal stem cells overexpressing microRNA-25 protect spinal cords against transient ischemia. J Thorac Cardiovasc Surg 157(2):508–517. https://doi.org/10.1016/j.jtcvs.2018.07.095

    Article  CAS  PubMed  Google Scholar 

  36. Geng W, Tang H, Luo S, Lv Y, Liang D, Kang X, Hong W (2019) Exosomes from miRNA-126-modified ADSCs promotes functional recovery after stroke in rats by improving neurogenesis and suppressing microglia activation. Am J Transl Res 11(2):780–792 eCollection 2019

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Maguire O, O'Loughlin K, Minderman H (2015) Simultaneous assessment of NF-κB/p65 phosphorylation and nuclear localization using imaging flow cytometry. J Immunol Methods 423:3–11. https://doi.org/10.1016/j.jim.2015.03.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jayasooriya RG, Lee KT, Kang CH, Dilshara MG, Lee HJ, Choi YH, Choi IW, Kim GY (2014) Isobutyrylshikonin inhibits lipopolysaccharide-induced nitric oxide and prostaglandin E2 production in BV2 microglial cells by suppressing the PI3K/Akt-mediated nuclear transcription factor-kappaB pathway. Nutr Res 34:1111–1119. https://doi.org/10.1016/j.nutres.2014.10.002

    Article  CAS  PubMed  Google Scholar 

  39. Zhou Y, Li P, Goodwin AJ, Cook JA, Halushka PV, Chang E, Zingarelli B, Fan H (2019) Exosomes from endothelial progenitor cells improve outcomes of the lipopolysaccharide-induced acute lung injury. Crit Care 23(1):44. https://doi.org/10.1186/s13054-019-2339-3

    Article  PubMed  PubMed Central  Google Scholar 

  40. Meng F, Wang F, Wang L, Wong SC, Cho WC, Chan LW (2016) MiR-30a-5p overexpression may overcome EGFR-inhibitor resistance through regulating PI3K/AKT signaling pathway in non-small cell lung cancer cell lines. Front Genet 7:197. https://doi.org/10.3389/fgene.2016.00197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (no. 81601053 and 81771342) and the Scientific Research Fund of Liaoning Provincial Education Department (no. LK201636).

Author information

Authors and Affiliations

Authors

Contributions

H.W. and Z.-L.Z. participated in the animal care and generated the animal models. H.W. and C.-F.C. performed the cell models and prepared the samples for the RT-PCR and immunohistochemistry assays; C.-F.C., Z.H.-X. and Z.-L.Z performed the experiments and statistical analysis; X.-Q.L. isolated and identified the neuron-derived EVs; and H.M. guided the study design and provided important suggestions regarding the manuscript writing.

Corresponding author

Correspondence to **ao-Qian Li.

Ethics declarations

Conflict of Interest

The authors declare that they no conflict of interest.

Ethical Approval and Consent to Participate

All experiments performed in this study were approved by the Ethics Committee of China Medical University and performed in compliance with the Care and Use of Laboratory Animals under approved protocols.

Consent for Publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Chen, FS., Zhang, ZL. et al. MiR-126-3p-Enriched Extracellular Vesicles from Hypoxia-Preconditioned VSC 4.1 Neurons Attenuate Ischaemia-Reperfusion-Induced Pain Hypersensitivity by Regulating the PIK3R2-Mediated Pathway. Mol Neurobiol 58, 821–834 (2021). https://doi.org/10.1007/s12035-020-02159-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-02159-y

Keywords

Navigation