Log in

BACE1-Deficient Mice Exhibit Alterations in Immune System Pathways

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

BACE1 encodes for the beta-site amyloid precursor protein cleaving enzyme 1 or β-secretase. Genetic deletion of Bace1 leads to behavioral alterations and affects midbrain dopaminergic signaling and memory processes. In order to further understand the role of BACE1 in brain function and behavior, we performed microarray transcriptome profiling and gene pathway analysis in the hippocampus of BACE1-deficient mice compared to wild type. We identified a total of 91 differentially expressed genes (DEGs), mostly enriched in pathways related to the immune and inflammation systems, particularly IL-9 and NF-κB activation pathways. Serum levels of IL-9 were elevated in BACE1-deficient mice. Our network analysis supports an intimate connection between immune response via NF-κB and BACE1 signaling through the NRG1/Akt1 pathway. Our findings warrant future mechanistic studies to determine if BACE1 signaling and the IL-9 pathway interact to alter behavior and brain function. This study opens new avenues in the investigation of hippocampus-related neuroimmunological and neuroinflammation-associated disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, Denis P, Teplow DB, Ross S et al (1999) Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286(5440):735–741

    Article  CAS  PubMed  Google Scholar 

  2. Willem M, Lammich S, Haass C (2009) Function, regulation and therapeutic properties of beta-secretase (BACE1). Semin Cell Dev Biol 20(2):175–182. doi:10.1016/j.semcdb.2009.01.003

    Article  CAS  PubMed  Google Scholar 

  3. Hu X, Fan Q, Hou H, Yan R (2016) Neurological dysfunctions associated with altered BACE1-dependent neuregulin-1 signaling. J Neurochem 136(2):234–249. doi:10.1111/jnc.13395

    Article  CAS  PubMed  Google Scholar 

  4. Wolpowitz D, Mason TB, Dietrich P, Mendelsohn M, Talmage DA, Role LW (2000) Cysteine-rich domain isoforms of the neuregulin-1 gene are required for maintenance of peripheral synapses. Neuron 25(1):79–91

    Article  CAS  PubMed  Google Scholar 

  5. Taveggia C, Zanazzi G, Petrylak A, Yano H, Rosenbluth J, Einheber S, Xu X, Esper RM et al (2005) Neuregulin-1 type III determines the ensheathment fate of axons. Neuron 47(5):681–694. doi:10.1016/j.neuron.2005.08.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Laird FM, Cai H, Savonenko AV, Farah MH, He K, Melnikova T, Wen H, Chiang HC et al (2005) BACE1, a major determinant of selective vulnerability of the brain to amyloid-beta amyloidogenesis, is essential for cognitive, emotional, and synaptic functions. J Neurosci Off J Soc Neurosci 25(50):11693–11709. doi:10.1523/JNEUROSCI.2766-05.2005

    Article  CAS  Google Scholar 

  7. Savonenko AV, Melnikova T, Laird FM, Stewart KA, Price DL, Wong PC (2008) Alteration of BACE1-dependent NRG1/ErbB4 signaling and schizophrenia-like phenotypes in BACE1-null mice. Proc Natl Acad Sci U S A 105(14):5585–5590. doi:10.1073/pnas.0710373105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Paredes RM, Piccart E, Navaira E, Cruz D, Javors MA, Koek W, Beckstead MJ, Walss-Bass C (2015) Physiological and behavioral effects of amphetamine in BACE1(−/−) mice. Genes Brain Behav 14(5):411–418. doi:10.1111/gbb.12222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wei C, Li J, Bumgarner RE (2004) Sample size for detecting differentially expressed genes in microarray experiments. BMC Genomics 5:87. doi:10.1186/1471-2164-5-87

    Article  PubMed  PubMed Central  Google Scholar 

  10. Calvano SE, **ao W, Richards DR, Felciano RM, Baker HV, Cho RJ, Chen RO, Brownstein BH et al (2005) A network-based analysis of systemic inflammation in humans. Nature 437(7061):1032–1037. doi:10.1038/nature03985

    Article  CAS  PubMed  Google Scholar 

  11. Adhikari AS, Singh BN, Rao KS, Rao Ch M (2011) alphaB-crystallin, a small heat shock protein, modulates NF-kappaB activity in a phosphorylation-dependent manner and protects muscle myoblasts from TNF-alpha induced cytotoxicity. Biochim Biophys Acta 1813(8):1532–1542. doi:10.1016/j.bbamcr.2011.04.009

    Article  CAS  PubMed  Google Scholar 

  12. Ousman SS, Tomooka BH, van Noort JM, Wawrousek EF, O’Connor KC, Hafler DA, Sobel RA, Robinson WH et al (2007) Protective and therapeutic role for alphaB-crystallin in autoimmune demyelination. Nature 448(7152):474–479. doi:10.1038/nature05935

    Article  CAS  PubMed  Google Scholar 

  13. Ohno M, Cole SL, Yasvoina M, Zhao J, Citron M, Berry R, Disterhoft JF, Vassar R (2007) BACE1 gene deletion prevents neuron loss and memory deficits in 5XFAD APP/PS1 transgenic mice. Neurobiol Dis 26(1):134–145. doi:10.1016/j.nbd.2006.12.008

    Article  CAS  PubMed  Google Scholar 

  14. Cole SL, Vassar R (2007) The basic biology of BACE1: a key therapeutic target for Alzheimer’s disease. Curr Genomics 8(8):509–530. doi:10.2174/138920207783769512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shao W, Zhang SZ, Tang M, Zhang XH, Zhou Z, Yin YQ, Zhou QB, Huang YY et al (2013) Suppression of neuroinflammation by astrocytic dopamine D2 receptors via alphaB-crystallin. Nature 494(7435):90–94. doi:10.1038/nature11748

    Article  CAS  PubMed  Google Scholar 

  16. Goswami R, Kaplan MH (2011) A brief history of IL-9. J Immunol 186(6):3283–3288. doi:10.4049/jimmunol.1003049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ding X, Cao F, Cui L, Ciric B, Zhang GX, Rostami A (2015) IL-9 signaling affects central nervous system resident cells during inflammatory stimuli. Exp Mol Pathol 99(3):570–574. doi:10.1016/j.yexmp.2015.07.010

    Article  CAS  PubMed  Google Scholar 

  18. Neurath MF, Finotto S (2016) IL-9 signaling as key driver of chronic inflammation in mucosal immunity. Cytokine Growth Factor Rev 29:93–99. doi:10.1016/j.cytogfr.2016.02.002

    Article  CAS  PubMed  Google Scholar 

  19. van Noort JM, Bsibsi M, Gerritsen WH, van der Valk P, Bajramovic JJ, Steinman L, Amor S (2010) Alphab-crystallin is a target for adaptive immune responses and a trigger of innate responses in preactive multiple sclerosis lesions. J Neuropathol Exp Neurol 69(7):694–703. doi:10.1097/NEN.0b013e3181e4939c

    Article  PubMed  Google Scholar 

  20. Stassen M, Muller C, Arnold M, Hultner L, Klein-Hessling S, Neudorfl C, Reineke T, Serfling E et al (2001) IL-9 and IL-13 production by activated mast cells is strongly enhanced in the presence of lipopolysaccharide: NF-kappa B is decisively involved in the expression of IL-9. J Immunol 166(7):4391–4398

    Article  CAS  PubMed  Google Scholar 

  21. Xu J, Sun J, Chen J, Wang L, Li A, Helm M, Dubovsky SL, Bacanu SA et al (2012) RNA-Seq analysis implicates dysregulation of the immune system in schizophrenia. BMC Genomics 13(Suppl 8):S2. doi:10.1186/1471-2164-13-S8-S2

    Article  PubMed  PubMed Central  Google Scholar 

  22. Dimitrov DH, Lee S, Yantis J, Valdez C, Paredes RM, Braida N, Velligan D, Walss-Bass C (2013) Differential correlations between inflammatory cytokines and psychopathology in veterans with schizophrenia: potential role for IL-17 pathway. Schizophr Res 151(1–3):29–35. doi:10.1016/j.schres.2013.10.019

    Article  PubMed  Google Scholar 

  23. Manu P, Correll CU, Wampers M, Mitchell AJ, Probst M, Vancampfort D, De Hert M (2014) Markers of inflammation in schizophrenia: association vs. causation. World Psychiatry 13(2):189–192. doi:10.1002/wps.20117

    Article  PubMed  PubMed Central  Google Scholar 

  24. Woodard-Grice AV, McBrayer AC, Wakefield JK, Zhuo Y, Bellis SL (2008) Proteolytic shedding of ST6Gal-I by BACE1 regulates the glycosylation and function of alpha4beta1 integrins. J Biol Chem 283(39):26364–26373. doi:10.1074/jbc.M800836200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Baeuerle PA, Henkel T (1994) Function and activation of NF-kappa B in the immune system. Annu Rev Immunol 12:141–179. doi:10.1146/annurev.iy.12.040194.001041

    Article  CAS  PubMed  Google Scholar 

  26. Bonizzi G, Karin M (2004) The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol 25(6):280–288. doi:10.1016/j.it.2004.03.008

    Article  CAS  PubMed  Google Scholar 

  27. Chen CH, Zhou W, Liu S, Deng Y, Cai F, Tone M, Tone Y, Tong Y et al (2012) Increased NF-kappaB signalling up-regulates BACE1 expression and its therapeutic potential in Alzheimer’s disease. Int J Neuropsychopharmacol 15(1):77–90. doi:10.1017/S1461145711000149

    Article  CAS  PubMed  Google Scholar 

  28. Keri S, Seres I, Kelemen O, Benedek G (2009) Neuregulin 1-stimulated phosphorylation of AKT in psychotic disorders and its relationship with neurocognitive functions. Neurochem Int 55(7):606–609. doi:10.1016/j.neuint.2009.06.002

    Article  CAS  PubMed  Google Scholar 

  29. Meng F, Liu L, Chin PC, D’Mello SR (2002) Akt is a downstream target of NF-kappa B. J Biol Chem 277(33):29674–29680. doi:10.1074/jbc.M112464200

    Article  CAS  PubMed  Google Scholar 

  30. Nicodemus KK, Law AJ, Radulescu E, Luna A, Kolachana B, Vakkalanka R, Rujescu D, Giegling I et al (2010) Biological validation of increased schizophrenia risk with NRG1, ERBB4, and AKT1 epistasis via functional neuroimaging in healthy controls. Arch Gen Psychiatry 67(10):991–1001. doi:10.1001/archgenpsychiatry.2010.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Huang CH, Pei JC, Luo DZ, Chen C, Chen YW, Lai WS (2014) Investigation of gene effects and epistatic interactions between Akt1 and neuregulin 1 in the regulation of behavioral phenotypes and social functions in genetic mouse models of schizophrenia. Front Behav Neurosci 8:455. doi:10.3389/fnbeh.2014.00455

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in by a NARSAD Brain and Behavior Research Young Investigator award to CWB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Stertz.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

Supplementary Figure S1

The relationship among significant networks enriched in the 91 differentially expressed genes (PNG 26 kb)

Supplementary Table 1

Differentially expressed genes (DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stertz, L., Contreras-Shannon, V., Monroy-Jaramillo, N. et al. BACE1-Deficient Mice Exhibit Alterations in Immune System Pathways. Mol Neurobiol 55, 709–717 (2018). https://doi.org/10.1007/s12035-016-0341-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0341-1

Keywords

Navigation