Log in

Notch Signaling Activation Promotes Seizure Activity in Temporal Lobe Epilepsy

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Notch signaling in the nervous system is often regarded as a developmental pathway. However, recent studies have suggested that Notch is associated with neuronal discharges. Here, focusing on temporal lobe epilepsy, we found that Notch signaling was activated in the kainic acid (KA)-induced epilepsy model and in human epileptogenic tissues. Using an acute model of seizures, we showed that DAPT, an inhibitor of Notch, inhibited ictal activity. In contrast, pretreatment with exogenous Jagged1 to elevate Notch signaling before KA application had proconvulsant effects. In vivo, we demonstrated that the impacts of activated Notch signaling on seizures can in part be attributed to the regulatory role of Notch signaling on excitatory synaptic activity in CA1 pyramidal neurons. In vitro, we found that DAPT treatment impaired synaptic vesicle endocytosis in cultured hippocampal neurons. Taken together, our findings suggest a correlation between aberrant Notch signaling and epileptic seizures. Notch signaling is up-regulated in response to seizure activity, and its activation further promotes neuronal excitation of CA1 pyramidal neurons in acute seizures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ables JL, Breunig JJ, Eisch AJ, Rakic P (2011) Not(ch) just development: Notch signalling in the adult brain. Nat Rev Neurosci 12(5):269–283. doi:10.1038/nrn3024

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Pierfelice T, Alberi L, Gaiano N (2011) Notch in the vertebrate nervous system: an old dog with new tricks. Neuron 69(5):840–855. doi:10.1016/j.neuron.2011.02.031

    Article  CAS  PubMed  Google Scholar 

  3. Alberi L, Liu S, Wang Y, Badie R, Smith-Hicks C, Wu J, Pierfelice TJ, Abazyan B, Mattson MP, Kuhl D, Pletnikov M, Worley PF, Gaiano N (2011) Activity-induced Notch signaling in neurons requires Arc/Arg3.1 and is essential for synaptic plasticity in hippocampal networks. Neuron 69(3):437–444. doi:10.1016/j.neuron.2011.01.004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Lieber T, Kidd S, Struhl G (2011) DSL-Notch signaling in the Drosophila brain in response to olfactory stimulation. Neuron 69(3):468–481. doi:10.1016/j.neuron.2010.12.015

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Hortopan GA, Baraban SC (2011) Aberrant expression of genes necessary for neuronal development and Notch signaling in an epileptic mind bomb zebrafish. Dev Dyn: Off Publ Am Assoc Anat 240(8):1964–1976. doi:10.1002/dvdy.22680

    Article  CAS  Google Scholar 

  6. Jiang YH, Armstrong D, Albrecht U, Atkins CM, Noebels JL, Eichele G, Sweatt JD, Beaudet AL (1998) Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation. Neuron 21(4):799–811

    Article  CAS  PubMed  Google Scholar 

  7. Hortopan GA, Dinday MT, Baraban SC (2010) Spontaneous seizures and altered gene expression in GABA signaling pathways in a mind bomb mutant zebrafish. J Neurosci Off J Soc Neurosci 30(41):13718–13728. doi:10.1523/JNEUROSCI.1887-10.2010

    Article  CAS  Google Scholar 

  8. Riban V, Bouilleret V, Pham-Le BT, Fritschy JM, Marescaux C, Depaulis A (2002) Evolution of hippocampal epileptic activity during the development of hippocampal sclerosis in a mouse model of temporal lobe epilepsy. Neuroscience 112(1):101–111

    Article  CAS  PubMed  Google Scholar 

  9. Bouilleret V, Ridoux V, Depaulis A, Marescaux C, Nehlig A, Le Gal La Salle G (1999) Recurrent seizures and hippocampal sclerosis following intrahippocampal kainate injection in adult mice: electroencephalography, histopathology and synaptic reorganization similar to mesial temporal lobe epilepsy. Neuroscience 89(3):717–729

    Article  CAS  PubMed  Google Scholar 

  10. Breunig JJ, Silbereis J, Vaccarino FM, Sestan N, Rakic P (2007) Notch regulates cell fate and dendrite morphology of newborn neurons in the post-natal dentate gyrus. Proc Natl Acad Sci U S A 104(51):20558–20563. doi:10.1073/pnas.0710156104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Balosso S, Ravizza T, Perego C, Peschon J, Campbell IL, De Simoni MG, Vezzani A (2005) Tumor necrosis factor-alpha inhibits seizures in mice via p75 receptors. Ann Neurol 57(6):804–812. doi:10.1002/ana.20480

    Article  CAS  PubMed  Google Scholar 

  12. Balosso S, Maroso M, Sanchez-Alavez M, Ravizza T, Frasca A, Bartfai T, Vezzani A (2008) A novel non-transcriptional pathway mediates the proconvulsive effects of interleukin-1beta. Brain J Neurol 131(Pt 12):3256–3265. doi:10.1093/brain/awn271

    Article  Google Scholar 

  13. Warnock DE, Schmid SL (1996) Dynamin GTPase, a force-generating molecular switch. BioEssays 18(11):885–893. doi:10.1002/bies.950181107

    Article  CAS  PubMed  Google Scholar 

  14. Sudhof TC (2004) The synaptic vesicle cycle. Annu Rev Neurosci 27:509–547. doi:10.1146/annurev.neuro.26.041002.131412

    Article  PubMed  Google Scholar 

  15. Meyers JR, MacDonald RB, Duggan A, Lenzi D, Standaert DG, Corwin JT, Corey DP (2003) Lighting up the senses: FM1-43 loading of sensory cells through nonselective ion channels. J Neurosci Off J Soc Neurosci 23(10):4054–4065

    CAS  Google Scholar 

  16. Bolte S, Talbot C, Boutte Y, Catrice O, Read ND, Satiat-Jeunemaitre B (2004) FM-dyes as experimental probes for dissecting vesicle trafficking in living plant cells. J Microsc 214(Pt 2):159–173. doi:10.1111/j.0022-2720.2004.01348.x

    Article  CAS  PubMed  Google Scholar 

  17. Salama-Cohen P, Arevalo MA, Grantyn R, Rodriguez-Tebar A (2006) Notch and NGF/p75NTR control dendrite morphology and the balance of excitatory/inhibitory synaptic input to hippocampal neurones through Neurogenin 3. J Neurochem 97(5):1269–1278. doi:10.1111/j.1471-4159.2006.03783.x

    Article  CAS  PubMed  Google Scholar 

  18. Wang Y, Chan SL, Miele L, Yao PJ, Mackes J, Ingram DK, Mattson MP, Furukawa K (2004) Involvement of Notch signaling in hippocampal synaptic plasticity. Proc Natl Acad Sci U S A 101(25):9458–9462. doi:10.1073/pnas.0308126101

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Hinshaw JE (2000) Dynamin and its role in membrane fission. Annu Rev Cell Dev Biol 16:483–519. doi:10.1146/annurev.cellbio.16.1.483

    Article  CAS  PubMed  Google Scholar 

  20. Xu B, Li S, Brown A, Gerlai R, Fahnestock M, Racine RJ (2003) EphA/ephrin-A interactions regulate epileptogenesis and activity-dependent axonal sprouting in adult rats. Mol Cell Neurosci 24(4):984–999

    Article  CAS  PubMed  Google Scholar 

  21. Matsui C, Inoue E, Kakita A, Arita K, Deguchi-Tawarada M, Togawa A, Yamada A, Takai Y, Takahashi H (2012) Involvement of the gamma-secretase-mediated EphA4 signaling pathway in synaptic pathogenesis of Alzheimer's disease. Brain Pathol 22(6):776–787. doi:10.1111/j.1750-3639.2012.00587.x

    Article  CAS  PubMed  Google Scholar 

  22. Wei J, Hemmings GP (2000) The NOTCH4 locus is associated with susceptibility to schizophrenia. Nat Genet 25(4):376–377. doi:10.1038/78044

    Article  CAS  PubMed  Google Scholar 

  23. Chang YT, Chen PC, Tsai IJ, Sung FC, Chin ZN, Kuo HT, Tsai CH, Chou IC (2011) Bidirectional relation between schizophrenia and epilepsy: a population-based retrospective cohort study. Epilepsia 52(11):2036–2042. doi:10.1111/j.1528-1167.2011.03268.x

    Article  PubMed  Google Scholar 

  24. Yizhar O, Fenno LE, Prigge M, Schneider F, Davidson TJ, O'Shea DJ, Sohal VS, Goshen I, Finkelstein J, Paz JT, Stehfest K, Fudim R, Ramakrishnan C, Huguenard JR, Hegemann P, Deisseroth K (2011) Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477(7363):171–178. doi:10.1038/nature10360

    Article  CAS  PubMed  Google Scholar 

  25. Dudek FE (2009) Epileptogenesis: a new twist on the balance of excitation and inhibition. Epilepsy Curr Am Epilepsy Soc 9(6):174–176. doi:10.1111/j.1535-7511.2009.01334.x

    Article  Google Scholar 

  26. Toro CT, Deakin JF (2007) Adult neurogenesis and schizophrenia: a window on abnormal early brain development? Schizophr Res 90(1–3):1–14. doi:10.1016/j.schres.2006.09.030

    Article  CAS  PubMed  Google Scholar 

  27. Kuruba R, Hattiangady B, Shetty AK (2009) Hippocampal neurogenesis and neural stem cells in temporal lobe epilepsy. Epilepsy Behav E&B 14(Suppl 1):65–73. doi:10.1016/j.yebeh.2008.08.020

    Article  Google Scholar 

  28. Ledergerber D, Fritschy JM, Kralic JE (2006) Impairment of dentate gyrus neuronal progenitor cell differentiation in a mouse model of temporal lobe epilepsy. Exp Neurol 199(1):130–142. doi:10.1016/j.expneurol.2006.02.010

    Article  PubMed  Google Scholar 

  29. Kralic JE, Ledergerber DA, Fritschy JM (2005) Disruption of the neurogenic potential of the dentate gyrus in a mouse model of temporal lobe epilepsy with focal seizures. Eur J Neurosci 22(8):1916–1927. doi:10.1111/j.1460-9568.2005.04386.x

    Article  PubMed  Google Scholar 

  30. Elliott RC, Khademi S, Pleasure SJ, Parent JM, Lowenstein DH (2001) Differential regulation of basic helix-loop-helix mRNAs in the dentate gyrus following status epilepticus. Neuroscience 106(1):79–88

    Article  CAS  PubMed  Google Scholar 

  31. Sibbe M, Haussler U, Dieni S, Althof D, Haas CA, Frotscher M (2012) Experimental epilepsy affects Notch1 signalling and the stem cell pool in the dentate gyrus. Eur J Neurosci 36(12):3643–3652. doi:10.1111/j.1460-9568.2012.08279.x

    Article  PubMed  Google Scholar 

  32. Parent JM, Elliott RC, Pleasure SJ, Barbaro NM, Lowenstein DH (2006) Aberrant seizure-induced neurogenesis in experimental temporal lobe epilepsy. Ann Neurol 59(1):81–91. doi:10.1002/ana.20699

    Article  PubMed  Google Scholar 

  33. Rensing NR, Guo D, Wong M (2012) Video-EEG monitoring methods for characterizing rodent models of tuberous sclerosis and epilepsy. Methods Mol Biol 821:373–391. doi:10.1007/978-1-61779-430-8_24

    Article  PubMed  Google Scholar 

  34. Maroso M, Balosso S, Ravizza T, Liu J, Aronica E, Iyer AM, Rossetti C, Molteni M, Casalgrandi M, Manfredi AA, Bianchi ME, Vezzani A (2010) Toll-like receptor 4 and high-mobility group box-1 are involved in ictogenesis and can be targeted to reduce seizures. Nat Med 16(4):413–419. doi:10.1038/nm.2127

    Article  CAS  PubMed  Google Scholar 

  35. Ge R, Qian H, Wang JH (2011) Physiological synaptic signals initiate sequential spikes at soma of cortical pyramidal neurons. Mol Brain 4:19. doi:10.1186/1756-6606-4-19

    Article  PubMed Central  PubMed  Google Scholar 

  36. Wang JH, Zhang MJ (2004) Differential modulation of glutamatergic and cholinergic synapses by calcineurin in hippocampal CA1 fast-spiking interneurons. Brain Res 1004(1–2):125–135. doi:10.1016/j.brainres.2004.01.025

    Article  CAS  PubMed  Google Scholar 

  37. Zakharenko SS, Zablow L, Siegelbaum SA (2001) Visualization of changes in presynaptic function during long-term synaptic plasticity. Nat Neurosci 4(7):711–717. doi:10.1038/89498

    Article  CAS  PubMed  Google Scholar 

  38. Anggono V, Cousin MA, Robinson PJ (2008) Styryl dye-based synaptic vesicle recycling assay in cultured cerebellar granule neurons. Methods Mol Biol 457:333–345

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We sincerely thank all the patients for their support and participation. We thank Prof. Jun Wei for revising of the manuscript. This work was supported by the National Basic Research Program of China [2010CB529603, 2012CB517902], National Natural Science Foundation of China [30971001, 31222031, 31021091], Bei**g Natural Science Foundation [7102109], and Fok Ying Tong Education Foundation [121024].

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Xu.

Additional information

Authors Longze Sha and **aofeng Wu contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 464 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sha, L., Wu, X., Yao, Y. et al. Notch Signaling Activation Promotes Seizure Activity in Temporal Lobe Epilepsy. Mol Neurobiol 49, 633–644 (2014). https://doi.org/10.1007/s12035-013-8545-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8545-0

Keywords

Navigation