Log in

Diamond matter-enabled low-leakage conductance to achieve the balanced dielectric properties of PVDF/ZrC/diamond blend films

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

For high dielectric constant, conductive carbide ceramic fillers are scattered in polymer to fabricate composites. However, high conductivity of carbides will lead to high leakage conductance and dielectric loss. In this work, to balance dielectric properties, polymer/ZrC/diamond blends were prepared via complementation of fillers. To perform property comparison, polymer/ZrC blends were prepared. Crystal forms and micromorphology of fillers were confirmed. All blends were measured to obtain dielectric constant, dielectric loss and conductivity at various frequencies. Compared to polymer/ZrC blends, dielectric constant of ternary blends slightly decreases and dielectric loss sharply reduces. By analysing ternary blends, strong interaction at polymer/ZrC interface results in high dielectric constant and insulating diamond results in low-dielectric loss via greatly-decreased leakage conductance. Partner employment of ZrC and diamond is distinctive. Ternary blend loaded with 5 wt% ZrC and 3 wt% diamond exhibits well-balanced dielectric performances (dielectric constant ~ 35.3; dielectric loss ~ 0.48) at 100 Hz. This work will provide valid route for balancing dielectric properties of polymer/conductive carbide blends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Soldano C 2021 Materials 14 3756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hao X 2013 J. Adv. Dielectr. 3 1330001

    Article  Google Scholar 

  3. Tang Y, Xu W, Niu S, Zhang Z, Zhang Y and Jiang Z 2021 J. Mater. Chem. A 9 10000

    Article  CAS  Google Scholar 

  4. Wang Y, Wang L, Yuan Q, Chen J, Niu Y, Xu X et al 2018 Nano Energy 44 364

    Article  CAS  Google Scholar 

  5. Sheng Y, Zhang X, Ye H, Liang L, Xu L and Wu H 2020 Colloids Surf. A Physicochem. Eng. Asp. 585 124091

    Article  CAS  Google Scholar 

  6. Sun L, Shi Z, He B, Wang H, Liu S, Huang M et al 2021 Adv. Funct. Mater. 31 2100280

    Article  CAS  Google Scholar 

  7. Sada T, Tsuji K, Ndayishimiye A, Fan Z, Fujioka Y and Randall C A 2021 Adv. Mater. Interfaces 8 2100963

    Article  CAS  Google Scholar 

  8. Wu S, Li W, Lin M, Burlingame Q, Chen Q, Payzant A et al 2013 Adv. Mater. 25 1734

    Article  CAS  PubMed  Google Scholar 

  9. Pan W, Cao M, Jan A, Hao H, Yao Z and Liu H 2020 J. Mater. Chem. C 8 2019

    Article  CAS  Google Scholar 

  10. Jia Y, Chowdhury M, Zhang D and Xu C 2019 ACS Appl. Mater. Interfaces 11 45862

    Article  CAS  PubMed  Google Scholar 

  11. Dang Z M, Zheng M S and Zha J W 2016 Small 12 1688

    Article  CAS  PubMed  Google Scholar 

  12. Zhang L and Cheng Z Y 2019 J. Adv. Dielectr. 1 369

    Google Scholar 

  13. Nilagiri B K B and Ramesh T 2018 Polym. Adv. Technol. 29 1568

    Article  Google Scholar 

  14. Chen Q, Shen Y, Zhang S and Zhang Q 2015 Annu. Rev. Mater. Sci. 45 433

    Article  CAS  Google Scholar 

  15. Deng Q, Zhou J, Li X, Feng Y, Liang Y and Liu Q 2021 Curr. Appl. Phys. 22 104

    Article  Google Scholar 

  16. Zhang Y and Gu J 2022 Nanomicro. Lett. 14 89

    PubMed  PubMed Central  Google Scholar 

  17. Sun H, Zhang H, Liu S, Ning N, Zhang L, Tian M et al 2018 Compos. Sci. Technol. 154 145

    Article  CAS  Google Scholar 

  18. Quan B, Liang X, Ji G, Cheng Y, Liu W, Ma J et al 2017 J. Alloys Compd. 728 1065

    Article  CAS  Google Scholar 

  19. Wang J, Ma F, Liang W and Sun M 2017 Mater. Today Phys. 2 6

    Article  Google Scholar 

  20. Ahmadi-Joneidi I, Shayegani-Akmal A A and Mohseni H 2017 IET Gener. Transm. Distrib. 11 2947

    Article  Google Scholar 

  21. Deng Q, Chen B, Bo M, Feng Y, Huang Y and Zhou J 2021 J. Mater. Chem. C 9 1051

    Article  CAS  Google Scholar 

  22. Wu Y, Chen F, Han W and Zhao T 2020 Ceram. Int. 46 22102

    Article  CAS  Google Scholar 

  23. Xu N S, Chen J and Deng S Z 2002 Diam. Relat. Mater. 11 249

    Article  CAS  Google Scholar 

  24. Guan L, Weng L, Chen N, Kannan H, Li Q, Zhang X et al 2021 Compos. Part A Appl. Sci. Manuf. 147 106432

    Article  CAS  Google Scholar 

  25. Sun J, Choi H, Cha S, Ahn D, Choi M, Park S et al 2022 Adv. Funct. Mater. 32 2109139

    Article  CAS  Google Scholar 

  26. Wu C, Gao Y, Liang X, Gubanski S M, Wang Q, Bao W et al 2019 Polymers 11 717

    Article  PubMed  PubMed Central  Google Scholar 

  27. Deng Q, Wang J, Chen P, Bo M, Yn Lu, Pan Y et al 2022 Colloids Surf. A Physicochem. Eng. Asp. 640 128501

    Article  CAS  Google Scholar 

  28. Xu Z, Li L, Wang W and Lu T 2019 Ceram. Int. 45 17318

    Article  Google Scholar 

  29. Zhang Y, Wang W, Zhang J and Ni Y 2020 Polym. Test. 91 106801

    Article  CAS  Google Scholar 

  30. Chandel S, Thakur P and Thakur A 2020 J. Alloys Compd. 845 156287

    Article  CAS  Google Scholar 

  31. Szucs A, Kolondzovski Z, Westerlund J and Vahala J 2019 COMPEL 38 1245

    Article  Google Scholar 

  32. Umezawa H, Saito T, Tokuda N, Ogura M, Ri S-G, Yoshikawa H et al 2007 Appl. Phys. Lett. 90 073506

    Article  Google Scholar 

  33. Liu J W, Liao M Y, Imura M, Banal R G and Koide Y 2017 J. Appl. Phys. 121 224502

    Article  Google Scholar 

  34. Harrison R W and Lee W E 2016 Adv. Appl. Ceram. 115 294

    Article  CAS  Google Scholar 

  35. Cheng D, Wang S and Ye H 2004 J. Alloys Compd. 377 221

    Article  CAS  Google Scholar 

  36. Esfahani H, Jose R and Ramakrishna S 2017 Materials 10 1238

    Article  PubMed  PubMed Central  Google Scholar 

  37. Li W, Song Z, Qian J, Tan Z, Chu H, Wu X et al 2018 Compos. Sci. Technol. 163 71

    Article  CAS  Google Scholar 

  38. Zhang M, Denes I and Buchmeiser M 2016 Macromol. Mater. Eng. 301 337

    Article  CAS  Google Scholar 

  39. Min D, Li Y, Yan C, **e D, Li S, Wu Q et al 2018 Polymers 10 1012

    Article  PubMed  PubMed Central  Google Scholar 

  40. AlMarzooqi F, Bilad M and Arafat H 2016 Eur. Polym. J. 77 164

    Article  CAS  Google Scholar 

  41. Feng Y, Miao B, Gong H, **e Y, Wei X and Zhang Z 2016 ACS Appl. Mater. Interfaces 8 19054

    Article  CAS  PubMed  Google Scholar 

  42. Teraji T, Koizumi S, Koide Y and Ito T 2008 Appl. Surf. Sci. 254 6273

    Article  CAS  Google Scholar 

  43. Zhang Y, Zhou Y, Zhang T, Teng C and Huang M 2022 Energy Rep. 8 564

    CAS  Google Scholar 

  44. Yang K, Huang X, He J and Jiang P 2015 Adv. Mater. Interfaces 2 150036

    Google Scholar 

  45. Cole M W, Nothwang W D, Hubbard C, Ngo E and Ervin M 2003 J. Appl. Phys. 93 9218

    Article  CAS  Google Scholar 

  46. Sun S, Chen W, Fang L, Cheng N, **ao Z, Zhao Z et al 2018 Ceram. Int. 44 9942

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Youth Project of Science and Technology Research Program of Chongqing Education Commission of China (Grant nos. KJQN201901417 and KJQN201801409), Support Programme for Growth of Young Scientific Research Talents of Yangtze Normal University (Grant no. 2018QNRC01), and General Project of Natural Science Foundation of Chongqing Science and Technology Bureau (Grant no. cstc2020jcyj-msxmX0033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yefeng Feng.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 690 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Q., **ong, W., He, T. et al. Diamond matter-enabled low-leakage conductance to achieve the balanced dielectric properties of PVDF/ZrC/diamond blend films. Bull Mater Sci 47, 78 (2024). https://doi.org/10.1007/s12034-023-03140-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-023-03140-w

Keywords

Navigation