Log in

Supercapacitive performance of hydrous ruthenium oxide (RuO2 · nH2O) thin films synthesized by chemical route at low temperature

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In the present investigation, we report the synthesis of ruthenium oxide (RuO2 · nH2O) thin films by simple chemical bath deposition (CBD) method at low temperature on the stainless steel substrate. The prepared thin films are characterized for their structural and morphological properties by means of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT–IR) and scanning electron microscopy (SEM). The structural study revealed that the ruthenium oxide thin films are amorphous. Scanning electron microscopy study shows compact morphology with small overgrown particles on the surface of the substrate. FT–IR study confirms the formation of RuO2 · nH2O material. The supercapacitor behaviour of RuO2 · nH2O thin film was studied using cyclic voltammetry (CV) technique in 0 · 5 M H2SO4electrolyte. RuO2 · nH2O film showed maximum specific capacitance of 192 F · g− 1at a scan rate of 20 mV · s− 1. The charge–discharge studies of RuO2 · nH2O carried out at 300 μA · cm− 2current density revealed the specific power of 1 · 5 kW.kg− 1and specific energy of 41 · 6 Wh.kg− 1with 95% coulombic efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Ahn Y R, Song M Y, Jo S M, Park C R and Kim D Y 2006 Nanotechnology 17 2865

  • Arabale G, Wagh D, Kulkarni M, Mulla I S, Vernekar S P, Vijayymohanan K and Rao A M 2003 Chem. Phys. Lett. 376 207

    Google Scholar 

  • Broughton J N and Brett M J 2002 Electrochem. Solid–State Lett. 5 A279

  • Chen W C, Wen T C and Teng H 2003 Electrochem. Acta 48 641

    Google Scholar 

  • Chen L, Yuan C, Gao B, Chen S and Zhang X 2009 J. Solid–State Electrochem. 13 1925

  • Conway B E and Pell Dec W G 1998 Proc of 8th International Seminar on Double Layer Capacitors and Similar Energy Storage Devices (Florida: Deerfiled Beach)

  • Dandekar M S, Arabale G and Vijayymohanan K 2005 J. Power Sources 141 (2005), 198

    Google Scholar 

  • Dhawale D S, Dubal D P, Jamadade V S, Salunkhe R R and Lokhande C D 2010 Curr. Appl. Phys. 10 904

    Google Scholar 

  • Ganesh V, Pitchumani S and Lakshminarayanan V 2006 J. Power Sources 158 1523

  • Gujar T P, KimWY, Puspitasari I, Jung K D and Joo O S 2007 Int. J. Electrochem. Sci. 2 666

  • Huang L M, Lin H Z, Wen T C and Gopalan A 2006 Electrochim. Acta 52 1058

  • Hu C C and Chen W C 2004 Electrochem. Acta 49 3469

  • Hu C C and Huang Y H 1999 J. Electrochem. Soc. 146 246

    Google Scholar 

  • Jow J J, Lee H J, Chen H R, Wu M S and Wei T Y 2007 Electrochim. Acta 52 2625

  • Karuppuchamy S and Jeong J M 2006 J. Oleo. Sci. 55 263

    Google Scholar 

  • Kim I H and Kim K B 2001 Electrochem. Solid–State Lett. 4 A62

  • Kim H and Kim K B 2006 J. Electrochem. Soc. 153 A383

    Google Scholar 

  • Komura T, Sakabayashi H and Takahashi K 1995 Bull. Chem. Soc. Jpn. 68 476

    Google Scholar 

  • Mane R S and Lokhande C D 2000 Mater. Chem. Phys. 65 1

    Google Scholar 

  • Mink J, Kristof J, Battisti A D, Daalio S and Nemeth C 1995 Surf. Sci. 335 252

    Google Scholar 

  • Mondal K S, Prasad R K and Munichandraiah N 2005 Synth. Met. 148 275

    Google Scholar 

  • Park B O, Lokhande C D, Park H, Jung K and Joo O S 2004a J. Mater. Sci. 39 4313

  • Park B O, Lokhande C D, Park H S, Jung K D and Joo O S 2004b J. Power Sources 134 148

  • Patake V D and Lokhande C D 2007 Appl. Surf. Sci. 254 2820

    Google Scholar 

  • Pawar S M, Pawar B S, Kim J H, Joo O S and Lokhande C D 2011 Curr. Appl. Phys. 11 117

    Google Scholar 

  • Pico F, Ibanez J, Lillo-Rodenas M A, Linares-Solano A, Rojas R M, Amarilla J M and Rojo J M 2008 J. Power Sources 176 417

    Google Scholar 

  • Prasad K R and Munichandraiah N 2002 Electrochem. Solid–State Lett. 5 271

  • Sugimoto W, Iwata H, Murakami Y and Takasu Y 2004 J. Electrochem. Soc. 151 A1181

  • Wang Y and Herron N 1991 J. Phys. Chem. 95 525

    Google Scholar 

  • Wang C C and Hu C C 2004 Mater. Chem. Phys. 83 289

    Google Scholar 

  • Yu N and Gao L 2009 Electrochem. Commun. 11 220

    Google Scholar 

  • Zheng J P, Cygan P J and Jow T R 1995 J. Electrochem. Soc. 142 2699

    Google Scholar 

Download references

Acknowledgments

One of the authors (PRD) is thankful to UGC, New Delhi, for financial support through a UGC-Research fellowship for meritorious student. Authors are also grateful to the Council for Scientific and Industrial Research (CSIR), New Delhi (India) for financial support through the scheme no. 03(1165)/10/EMR-II.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

DESHMUKH, P.R., PUSAWALE, S.N., BULAKHE, R.N. et al. Supercapacitive performance of hydrous ruthenium oxide (RuO2 · nH2O) thin films synthesized by chemical route at low temperature. Bull Mater Sci 36, 1171–1176 (2013). https://doi.org/10.1007/s12034-013-0592-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-013-0592-7

Keywords

Navigation