Log in

Bioinformatic Approach to Investigate Larvae Gut Microbiota Cellulosimicrobium protaetiae via Whole-Genome Analysis

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The insect larvae Protaetia brevitarsis seulensis have recently been researched as a nutritious food source and concentrated on their environmental impacts. Therefore, their gut microbiota has been studied to elucidate their effects and roles on the environment. Of the abundance of bacterial genus identified based on the 16S rRNA genes from isolates of the gut of insect larva Protaetia brevitarsis seulensis, six of the prominent genus were identified as Bacillus (40.2%), Cellulosimicrobium (33.5%), Microbacterium (2.8%), Streptomyces (3%), Krasilnikoviella (17.5%), and Isoptericola (3%) and their similarity of 16S rRNA blast changed from 99 to 100%. Cellulosimicrobium protaetiae BI34T showed strong denitrification and cellulose degradation activity. The newly complete genome sequence of BI34T and the genomes of five species was published in the genus Cellulosimicrobium with emphasis on the denitrification and secondary metabolite genes. In order to elucidate the relationship between the strain BI34T and the host insect larva, the whole-genome sequence was analyzed and compared with the genomes of five strains in the same genus, Cellulosimicrobium, loaded from GenBank. Our results revealed the composition of the gut microbiota of the insect larvae and analyzed the genomic data for the new strain to predict its characteristics and to understand the nitrogen metabolism pathway.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

Abbreviations

BGCs:

Biosynthetic gene clusters

CDSs:

Protein coding genes

COG:

Clusters of orthologous groups of proteins

HGAP:

Hierarchical genome assembly process

ncRNA:

Non-coding RNA

NRP:

Non-ribosomal peptide

SMRT:

Single-molecule real time

RAST:

Rapid annotation subsystems technology

rRNA:

Ribosomal RNA

tRNA:

Transfer RNA

T3PKS:

Type III polyketide synthase

References

  1. Zumft, W. G., & Körner, H. (1997). Enzyme diversity and mosaic gene organization in denitrification. Antonie van Leeuwenhoek, 71, 43–58.

    Article  CAS  PubMed  Google Scholar 

  2. Yu, K., & Zhang, T. (2012). Metagenomic and metatranscriptomic analysis of microbial community structure and gene expression of activated sludge. PLoS ONE, 7, e38183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pajares, S., & Bohannan, B. J. M. (2016). Ecology of nitrogen fixing, nitrifying, and denitrifying microorganisms in tropical forest soils. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2016.01045

    Article  PubMed  PubMed Central  Google Scholar 

  4. Le Han, H., Nguyen, T. T. H., Li, Z., Shin, N. R., & Kim, S. G. (2022). Cellulosimicrobium protaetiae sp. nov., isolated from the gut of the larva of Protaetia brevitarsis seulensis. International Journal of Systematic and Evolutionary Microbiology. https://doi.org/10.1099/ijsem.0.005296

    Article  PubMed  Google Scholar 

  5. Oh, M., Kim, J. H., Yoon, J. H., Schumann, P., & Kim, W. (2018). Cellulosimicrobium arenosum sp. nov., isolated from marine sediment sand. Current Microbiology, 75, 901–906.

    Article  CAS  PubMed  Google Scholar 

  6. Brown, J. M., Steigerwalt, A. G., Morey, R. E., Daneshvar, M. I., Romero, L. J., & McNeil, M. M. (2006). Characterization of clinical isolates previously identified as Oerskovia turbata: Proposal of Cellulosimicrobium funkei sp. nov. and emended description of the genus Cellulosimicrobium. International Journal of Systematic and Evolutionary Microbiology, 56, 801–804.

    Article  CAS  PubMed  Google Scholar 

  7. Gonzales Zamora, J. A., & Camps, N. (2018). Bacteremia caused by cellulosimicrobium in a bone marrow transplant patient: A case report and literature review. IDCases., 11, 64–66.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kenzaka, T., Ishimoto, Y., & Tani, K. (2017). Draft genome sequence of multidrug-resistant Cellulosimicrobium sp. strain KWT-B, isolated from Feces of Hirundo rustica. Genome Announcements, 5, e00641-e1617.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lee, J., Hwang, I. H., Kim, J. H., Kim, M.-A., Hwang, J. S., Kim, Y. H., & Na, M. (2017). Quinoxaline-, dopamine-, and amino acid-derived metabolites from the edible insect Protaetia brevitarsis seulensis. Archives of Pharmacal Research, 40, 1064–1070.

    Article  CAS  PubMed  Google Scholar 

  10. Yoon, C.-H., Jeon, S.-H., Ha, Y. J., Kim, S. W., Bang, W. Y., Bang, K. H., Gal, S. W., Kim, I.-S., & Cho, Y.-S. (2020). Functional chemical components in Protaetia brevitarsis larvae: impact of supplementary feeds. Korean Journal for Food Science of Animal Resources, 40, 461–473.

    Article  Google Scholar 

  11. Sanschagrin, S., & Yergeau, E. (2014). Next-generation sequencing of 16S ribosomal RNA gene amplicons. Journal of Visualized Experiments. https://doi.org/10.3791/51709-v

    Article  PubMed  PubMed Central  Google Scholar 

  12. Nikkhah, A., Van Haute, S., Jovanovic, V., Jung, H., Dewulf, J., Cirkovic Velickovic, T., & Ghnimi, S. (2021). Life cycle assessment of edible insects (Protaetia brevitarsis seulensis larvae) as a future protein and fat source. Scientific Reports, 11(1), 14030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Geng, J., Sui, Z., Dou, W., Miao, Y., Wang, T., Wei, X., Chen, S., Zhang, Z., **ao, J., & Huang, D. (2022). 16S rRNA gene sequencing reveals specific gut microbes common to medicinal insects. Frontiers in Microbiology, 13, 892767.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Xuan, H., Gao, P., Du, B., Geng, L., Wang, K., Huang, K., Zhang, J., Huang, T., & Shu, C. (2022). Characterization of microorganisms from protaetia brevitarsis larva frass. Microorganisms, 10, 311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pheng, S., Han, H. L., Park, D. S., Chung, C. H., & Kim, S. G. (2020). Lactococcus kimchii sp. nov., a new lactic acid bacterium isolated from kimchi. International Journal of Systematic and Evolutionary Microbiology, 70, 505–510.

    Article  CAS  PubMed  Google Scholar 

  16. Yoon, S.-H., Ha, S.-M., Kwon, S., Lim, J., Kim, Y., Seo, H., & Chun, J. (2017). Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. International Journal of Systematic and Evolutionary Microbiology, 67, 1613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., & Higgins, D. G. (1997). The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25, 4876–4882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425.

    CAS  PubMed  Google Scholar 

  19. Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870–1874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Le Han, H., Jiang, L., Thu Tran, T. N., Muhammad, N., Kim, S. G., Tran Pham, V. P., Ng, Y. J., Khoo, K. S., Chew, K. W., & Phuong Nguyen, T. D. (2022). Whole-genome analysis and secondary metabolites production of a new strain Brevibacillus halotolerans 7WMA2: A potential biocontrol agent against fungal pathogens. Chemosphere, 307, 136004.

    Article  PubMed  Google Scholar 

  21. Aziz, R. K., Bartels, D., Best, A. A., DeJongh, M., Disz, T., Edwards, R. A., Formsma, K., Gerdes, S., Glass, E. M., Kubal, M., Meyer, F., Olsen, G. J., Olson, R., Osterman, A. L., Overbeek, R. A., McNeil, L. K., Paarmann, D., Paczian, T., Parrello, B., & Zagnitko, O. (2008). The RAST server: Rapid annotations using subsystems technology. BMC Genomics, 9, 75.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Meier-Kolthoff, J. P., Auch, A. F., Klenk, H.-P., & Göker, M. (2013). Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics, 14, 60.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Blin, K., Shaw, S., Steinke, K., Villebro, R., Ziemert, N., Lee, S. Y., Medema, M. H., & Weber, T. (2019). antiSMASH 5.0: Updates to the secondary metabolite genome mining pipeline. Nucleic Acids Research, 47, W81–W87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dou, T.-Y., Luan, H.-W., Ge, G.-B., Dong, M.-M., Zou, H.-F., He, Y.-Q., Cui, P., Wang, J.-Y., Hao, D.-C., Yang, S.-L., & Yang, L. (2015). Functional and structural properties of a novel cellulosome-like multienzyme complex: Efficient glycoside hydrolysis of water-insoluble 7-xylosyl-10-deacetylpaclitaxel. Science and Reports, 5, 13768.

    Article  Google Scholar 

  25. Sharma, A., Gilbert, J. A., & Lal, R. (2016). (Meta)genomic insights into the pathogenome of Cellulosimicrobium cellulans. Science and Reports, 6, 25527.

    Article  CAS  Google Scholar 

  26. Barth, K. R., Isabella, V. M., & Clark, V. L. (2009). Biochemical and genomic analysis of the denitrification pathway within the genus Neisseria. Microbiology (Reading), 155, 4093–4103.

    Article  CAS  PubMed  Google Scholar 

  27. Yang, T., Yang, Q., Shi, Y., **n, Y., Zhang, L., Gu, Z., & Shi, G. (2021). Insight into the denitrification mechanism of Bacillus subtilis JD-014 and its application potential in bioremediation of nitrogen wastewater. Process Biochemistry, 103, 78–86.

    Article  CAS  Google Scholar 

  28. Sultanpuram, V. R., Mothe, T., Chintalapati, S., & Chintalapati, V. R. (2015). Cellulosimicrobium aquatile sp. nov., isolated from Panagal reservoir, Nalgonda, India. Antonie Leeuwenhoek., 108, 1357–1364.

    Article  PubMed  Google Scholar 

  29. Yoon, J. H., Kang, S. J., Schumann, P., & Oh, T. K. (2007). Cellulosimicrobium terreum sp. nov., isolated from soil. International Journal of Systematic and Evolutionary Microbiology, 57, 2493–2497.

    Article  CAS  PubMed  Google Scholar 

  30. Hamada, M., Shibata, C., Tamura, T., Nurkanto, A., Ratnakomala, S., Lisdiyanti, P., & Suzuki, K. (2016). Cellulosimicrobium marinum sp. nov., an actinobacterium isolated from sea sediment. Archives of Microbiology, 198, 439–444.

    Article  CAS  PubMed  Google Scholar 

  31. Qin, W., Fan, F., Zhu, Y., Huang, X., Ding, A., Liu, X., & Dou, J. (2018). Anaerobic biodegradation of benzo(a)pyrene by a novel Cellulosimicrobium cellulans CWS2 isolated from polycyclic aromatic hydrocarbon-contaminated soil. Brazilian Journal of Microbiology, 49, 258–268.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from the KRIBB Research Initiative in Korea and funded by University of Technology and Education - The University of Danang under project number T2022-06-06.

Author information

Authors and Affiliations

Authors

Contributions

HLH and TDPN conceived and designed the study. HLH, LTV, and PTQQ performed the research. HLH, SGK, and LMJ analyzed and validated data. KSK, KWC, and TNTT contributed to new methods and analytical tools. HLH and TDPN wrote the manuscript. KSK, SSC, and KWC reviewed and edited the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Thi Dong Phuong Nguyen.

Ethics declarations

Conflict of interest

There are no conflicts of interest.

Research Involving Human and Animal Rights

The manuscript does not contain experiments using animals. The manuscript does not contain human studies.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Genome information for the 16S rRNA, chromosome and plasmid are available under the GenBank/EMBL/DDBJ accession number MK966391, CP052757 and CP052758.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le Ho, H., Tran-Van, L., Quyen, P.T.Q. et al. Bioinformatic Approach to Investigate Larvae Gut Microbiota Cellulosimicrobium protaetiae via Whole-Genome Analysis. Mol Biotechnol (2024). https://doi.org/10.1007/s12033-023-00984-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-023-00984-9

Keywords

Navigation