Log in

Molecular Cloning, Expression and Biochemical Characterization of a Family 5 Glycoside Hydrolase First Endo-Mannanase (RfGH5_7) from Ruminococcus flavefaciens FD-1 v3

  • Original paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The cellulosomal enzyme, RfGH51/2, of Ruminococcus flavefaciens contains an N-terminal module, a family 5 glycoside hydrolase GH5_4 with a putative endoglucanase activity, while C-terminal domain is a putative endo-mannanase (GH5_7). The two putative catalytic modules are separated by family 80 carbohydrate binding module (CBM80) having wide ligand specificity. The putative endo-mannanase module, GH5_7 (RfGH5_7), was cloned, expressed in Escherichia coli BL-21(DE3) cells and purified. SDS-PAGE analysis of purified RfGH5_7 showed molecular size ~ 35 kDa. Substrate specificity analysis of RfGH5_7 showed maximum activity against locust bean galactomannan (298.5 U/mg) followed by konjac glucomannan (256.2 U/mg) and carob galactomannan (177.2 U/mg). RfGH5_7 showed maximum activity at optimum pH 6.0 and temperature 60 °C. RfGH5_7 displayed stability in between pH 6.0 and 9.0 and thermostability till 50 °C. 10 mM Ca2+ ions increased the enzyme activity by 33%. The melting temperature of RfGH5_7 was 84 °C that was not affected by Ca2+ ions or chelating agents. RfGH5_7 showed, Vmax, 389 U/mg and Km, 0.92 mg/mL for locust bean galactomannan. TLC analysis revealed that RfGH5_7 hydrolysed locust bean galactomannan predominantly to mannose, mannobiose, mannotriose and higher degree of polymerization of manno-oligosaccharides indicating an endo-acting catalytic mechanism. This study revealed a highly active and thermostable endo-mannanase with considerable biotechnological potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

GH:

Glycoside hydrolases

Rf:

Ruminococcus flavefaciens

TLC:

Thin-layer chromatography

IMAC:

Immobilized metal ion affinity chromatography

ESI-MS:

Electron spray ionization mass spectrometry

SDS-PAGE:

Sodium dodecyl sulphate-polyacrylamide gel electrophoresis

References

  1. Brett, C. T., & Waldron, K. W. (1996). Physiology and biochemistry of plant cell walls (Vol. 2). New York: Springer.

    Google Scholar 

  2. Kuhad, R. C., Singh, A., & Eriksson, K. E. L. (1997). Microorganisms and enzymes involved in the degradation of plant fiber cell walls. Biotechnology in the pulp and paper industry (pp. 45–125). Berlin: Springer.

    Chapter  Google Scholar 

  3. Petkowicz, C. D. O., Reicher, F., Chanzy, H., Taravel, F. R., & Vuong, R. (2001). Linear mannan in the endosperm of Schizolobium amazonicum. Carbohydrate Polymers, 44(2), 107–112.

    Article  CAS  Google Scholar 

  4. Liepman, A. H., Nairn, C. J., Willats, W. G., Sørensen, I., Roberts, A. W., & Keegstra, K. (2007). Functional genomic analysis supports conservation of function among cellulose synthase-like a gene family members and suggests diverse roles of mannans in plants. Plant Physiology, 143(4), 1881–1893.

    Article  CAS  Google Scholar 

  5. Ghosh, A., Luís, A. S., Brás, J. L., Fontes, C. M., & Goyal, A. (2013). Thermostable recombinant β-(1 → 4)-mannanase from C. thermocellum: Biochemical characterization and manno-oligosaccharides production. Journal of Agricultural and Food Chemistry, 61(50), 12333–12344.

    Article  CAS  Google Scholar 

  6. Sharma, K., Dhillon, A., & Goyal, A. (2018). Insights into structure and reaction mechanism of β-mannanases in Current Protein and Peptide. Science, 19(1), 34–47.

    CAS  Google Scholar 

  7. McCleary, B. V. (1988). Carob and guar galactomannans. Methods in enzymology (Vol. 160, pp. 523–527). Cambridge: Academic Press.

    Google Scholar 

  8. Stalbrand, H. (2003). Enzymology of endo-1,4-beta-Mannanases. Food science and technology (pp. 961–970). New York: Marcel Dekker.

    Google Scholar 

  9. Gübitz, G. M., Haltrich, D., Latal, B., & Steiner, W. (1997). Mode of depolymerisation of hemicellulose by various mannanases and xylanases in relation to their ability to bleach softwood pulp. Applied Microbiology and Biotechnology, 47(6), 658–662.

    Article  Google Scholar 

  10. Clarke, J. H., Davidson, K., Rixon, J. E., Halstead, J. R., Fransen, M. P., Gilbert, H. J., et al. (2000). A comparison of enzyme-aided bleaching of softwood paper pulp using combinations of xylanase, mannanase and α-galactosidase. Applied Microbiology and Biotechnology, 53(6), 661–667.

    Article  CAS  Google Scholar 

  11. Kansoh, A. L., & Nagieb, Z. A. (2004). Xylanase and mannanase enzymes from Streptomyces galbus NR and their use in biobleaching of softwood kraft pulp. Antonie van Leeuwenhoek, 85(2), 103–114.

    Article  CAS  Google Scholar 

  12. Zhao, D., Wang, Y., Na, J., **, W., & Ge, J. (2019). The response surface optimization of β-mannanase produced by Lactobacillus casei HDS-01 and its potential in juice clarification. Preparative Biochemistry & Biotechnology, 49(2), 202–207.

    Article  CAS  Google Scholar 

  13. Saha, D., & Bhattacharya, S. (2010). Hydrocolloids as thickening and gelling agents in food: A critical review. Journal Food Science Technology, 47(6), 587–597.

    Article  CAS  Google Scholar 

  14. Srivastava, P. K., & Kapoor, M. (2014). Cost-effective endo-mannanase from Bacillus sp. CFR1601 and its application in generation of oligosaccharides from guar gum and as detergent additive. Preparative Biochemistry and Biotechnology, 44(4), 392–417.

    Article  CAS  Google Scholar 

  15. Jooste, T., García-Aparicio, M. P., Brienzo, M., Van Zyl, W. H., & Görgens, J. F. (2013). Enzymatic hydrolysis of spent coffee ground. Applied Biochemistry and Biotechnology, 169(8), 2248–2262.

    Article  CAS  Google Scholar 

  16. Suzuki, K., Michikawa, M., Sato, H., Yuki, M., Kamino, K., Ogasawara, W., et al. (2018). Purification, cloning, functional expression, structure, and characterization of a thermostable β-Mannanase from Talaromyces trachyspermus B168 and its efficiency in production of mannooligosaccharides from coffee wastes. Journal of Applied Glycoscience, 65(2), 13–21.

    Article  CAS  Google Scholar 

  17. Cartmell, A., Topakas, E., Ducros, V. M., Suits, M. D., Davies, G. J., & Gilbert, H. J. (2008). The Cellvibrio japonicus mannanase CjMan26C displays a unique exo-mode of action that is conferred by subtle changes to the distal region of the active site. Journal of Biological Chemistry, 283(49), 34403–34413.

    Article  CAS  Google Scholar 

  18. Fontes, C. M., & Gilbert, H. J. (2010). Cellulosomes: highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates. Annual Review of Biochemistry, 79, 655–681.

    Article  CAS  Google Scholar 

  19. Asano, I., Hamaguchi, K., Fujii, S., & Iino, H. (2003). In vitro digestibility and fermentation of mannooligosaccharides from coffee mannan. Food Science and Technology Research, 9(1), 62–66.

    Article  CAS  Google Scholar 

  20. Asano, I., Ikeda, Y., Fujii, S., & Iino, H. (2007). Effects of mannooligosaccharides from coffee on microbiota and short chain fatty acids in rat cecum. Food Science and Technology Research, 10(3), 273–277.

    Article  Google Scholar 

  21. Kim, Y. J., & Park, G. G. (2005). Identification and growth activity to Bifidobacterium spp. of Locust Bean Gum Hydrolysates by Trichoderma harzianum β-mannanase. Journal of the Korean Society for Applied Biological Chemistry, 48(4), 364–369.

    CAS  Google Scholar 

  22. Hoshino-Takao, I., Fujii, S., Ishii, A., Han, L. K., Okuda, H., & Kumao, T. (2008). Effects of mannooligosaccharides from coffee mannan on blood pressure in dahl salt-sensitive rats. Journal of Nutritional Science and Vitaminology, 54(2), 181–184.

    Article  CAS  Google Scholar 

  23. Ghosh, A., Verma, A. K., Tingirikari, J. R., Shukla, R., & Goyal, A. (2015). Recovery and purification of oligosaccharides from copra meal by recombinant endo-β-mannanase and deciphering molecular mechanism involved and its role as potent therapeutic agent. Molecular Biotechnology, 57(2), 111–127.

    Article  CAS  Google Scholar 

  24. Venditto, I., Luis, A. S., Rydahl, M., Schückel, J., Fernandes, V. O., Vidal-Melgosa, S., et al. (2016). Complexity of the Ruminococcus flavefaciens cellulosome reflects an expansion in glycan recognition. Proceedings of the National Academy of Sciences USA, 113(26), 7136–7141.

    Article  CAS  Google Scholar 

  25. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254.

    Article  CAS  Google Scholar 

  26. Nelson, N. (1944). A photometric adaptation of the Somogyi method for the determination of glucose. Journal of Biological Chemistry, 153(2), 375–380.

    CAS  Google Scholar 

  27. Somogyi, M. (1945). A new reagent for the determination of sugars. Journal of Biological Chemistry, 160, 61–68.

    CAS  Google Scholar 

  28. Kurokawa, J., Hem**da, E., Arai, T., Karita, S., Kimura, T., Sakka, K., et al. (2001). Sequence of the Clostridium thermocellum mannanase gene man26B and characterization of the translated product. Bioscience, Biotechnology, and Biochemistry, 65(3), 548–554.

    Article  CAS  Google Scholar 

  29. Zang, H., **e, S., Wu, H., Wang, W., Shao, X., Wu, L., et al. (2015). A novel thermostable GH5_7 β-mannanase from Bacillus pumilus GBSW19 and its application in manno-oligosaccharides (MOS) production. Enzyme and Microbial Technology, 78, 1–9.

    Article  CAS  Google Scholar 

  30. Yang, P., Li, Y., Wang, Y., Meng, K., Luo, H., Yuan, T., et al. (2009). A novel β-mannanase with high specific activity from Bacillus circulans CGMCC1554: Gene cloning, expression and enzymatic characterization. Applied Biochemistry and Biotechnology, 159(1), 85.

    Article  CAS  Google Scholar 

  31. Vu, T. T., Quyen, D. T., Dao, T. T., & Nguyen, S. L. T. (2012). Cloning, high-level expression, purification, and properties of a novel endo-beta-1, 4-mannanase from Bacillus subtilis G1 in Pichia pastoris. Journal of Microbiology and Biotechnololy, 22(3), 331–338.8.

    Article  CAS  Google Scholar 

  32. Tamaru, Y., & Doi, R. H. (2000). The engL gene cluster of Clostridium cellulovorans contains a gene for cellulosomal ManA. Journal of Bacteriology, 182(1), 244–247.

    Article  CAS  Google Scholar 

  33. Wang, Y., Vilaplana, F., Brumer, H., & Aspeborg, H. (2014). Enzymatic characterization of a glycoside hydrolase family 5 subfamily 7 (GH5_7) mannanase from Arabidopsis thaliana. Planta, 239(3), 653–665.

    Article  CAS  Google Scholar 

  34. Sakai, K., Mochizuki, M., Yamada, M., Shinzawa, Y., Minezawa, M., Kimoto, S., et al. (2017). Biochemical characterization of thermostable β-1, 4-mannanase belonging to the glycoside hydrolase family 134 from Aspergillus oryzae. Applied Microbiology and Biotechnology, 101(8), 3237–3245.

    Article  CAS  Google Scholar 

  35. Wang, Y., Shi, P., Luo, H., Bai, Y., Huang, H., Yang, P., et al. (2012). Cloning, over-expression and characterization of an alkali-tolerant endo-β-1, 4-mannanase from Penicillium freii F63. Journal of Bioscience and Bioengineering, 113(6), 710–714.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research work was supported by NERBPMC Twinning project from DBT (No. BT/PR24786/NER/95/853/2017), Ministry of Science and Technology, Govt. of India to AG. The authors are thankful to Central Instrumentation Facility, IIT Guwahati for providing ESI-MS facility. The authors are thankful to Vikky Rajulapati for his help in ESI-MS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Goyal.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goyal, D., Kumar, K., Centeno, M.S.J. et al. Molecular Cloning, Expression and Biochemical Characterization of a Family 5 Glycoside Hydrolase First Endo-Mannanase (RfGH5_7) from Ruminococcus flavefaciens FD-1 v3. Mol Biotechnol 61, 826–835 (2019). https://doi.org/10.1007/s12033-019-00205-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-019-00205-2

Keywords

Navigation