Log in

Population-based high-dimensional analyses identify multiple intrinsic characters for cancer vaccines against lung squamous cell carcinoma

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

In lung squamous cell carcinoma (LUSC), current cancer vaccines show promising effects, despite a lack of benefit for a large number of patients. We first identified the tumor antigens into shared and private antigens, and determined the population by clustering analysis in public datasets. For vaccine development, The Cancer Genome Atlas (TCGA) and Clinical Proteomic Tumor Analysis Consortium (CPTAC) were collected. WGCNA method was furthermore applied to construct a consensus gene co-expression network based on TCGA and CPTAC datasets. The main analyses in bulk sequencing included survival, clinical features, tumor microenvironment (TME), and pathways enrichment. In addition, single-cell RNA (scRNA) analysis of cancer epithelium dissected consensus subtype. We identified the ideal population for cancer vaccines, and candidate neoantigens including AOC1, COL5A2, LGI2, and POSTN. According to subtype analysis, Lung squamous 1 (LSQ1) type exhibited a higher tumor mutational load (TMB) and copy number but no immune infiltration, whereas lung squamous 2 (LSQ2) tumors had a higher global methylation level and more fibroblasts but had less stemness. Meanwhile, trajectory analysis further revealed that the evolution of TME influenced prognosis. We emphasized specific pathways or targets with the potential for combination immunotherapy by consensus network and single-cell RNA analyses. Anti-androgen therapy has been validated in vitro experiments of LUSC as proof of concept. In conclusion, LSQ1 was linked to immune exclusion and might be utilized for vaccination, while LSQ2 was linked to immune dysfunction and could be used for programmed cell death protein 1 (PD1) blocking therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated and methods described were in accordance with the relevant guidelines and are permitted by non-commercial organization and did not need access approval. The corresponding author can be contacted for reasonable data.

References

  1. Lau SCM, Pan Y, Velcheti V, Wong KK. Squamous cell lung cancer: current landscape and future therapeutic options. Cancer Cell. 2022;40(11):1279–93.

    Article  CAS  PubMed  Google Scholar 

  2. Wang M, Herbst RS, Boshoff C. Toward personalized treatment approaches for non-small-cell lung cancer. Nat Med. 2021;27(8):1345–56.

    Article  CAS  PubMed  Google Scholar 

  3. Chiu LC, Lin SM, Lo YL, Kuo SC, Yang CT, Hsu PC. Immunotherapy and vaccination in surgically resectable Non-Small Cell Lung Cancer (NSCLC). Vaccines. 2021;9(7):689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Trujillo JA, Sweis RF, Bao R, Luke JJ. T cell-inflamed versus non-T cell-inflamed tumors: a conceptual framework for cancer immunotherapy drug development and combination therapy selection. Cancer Immunol Res. 2018;6(9):990–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Galon J, Bruni D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat Rev Drug Discov. 2019;18(3):197–218.

    Article  CAS  PubMed  Google Scholar 

  6. Saxena M, van der Burg SH, Melief CJM, Bhardwaj N. Therapeutic cancer vaccines. Nat Rev Cancer. 2021;21(6):360–78.

    Article  CAS  PubMed  Google Scholar 

  7. Bol KF, Schreibelt G, Gerritsen WR, de Vries IJ, Figdor CG. Dendritic cell-based immunotherapy: state of the art and beyond. Clin Cancer Res. 2016;22(8):1897–906.

    Article  CAS  PubMed  Google Scholar 

  8. Tian Y, Zhai X, Yan W, Zhu H, Yu J. Clinical outcomes of immune checkpoint blockades and the underlying immune escape mechanisms in squamous and adenocarcinoma NSCLC. Cancer Med. 2021;10(1):3–14.

    Article  CAS  PubMed  Google Scholar 

  9. Jiang P, Gu S, Pan D, et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat Med. 2018;24(10):1550–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bagaev A, Kotlov N, Nomie K, et al. Conserved pan-cancer microenvironment subtypes predict response to immunotherapy. Cancer Cell. 2021;39(6):845-865.e847.

    Article  CAS  PubMed  Google Scholar 

  11. Campbell JD, Alexandrov A, Kim J, et al. Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. Nat Genet. 2016;48(6):607–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Satpathy S, Krug K, Jean Beltran PM, et al. A proteogenomic portrait of lung squamous cell carcinoma. Cell. 2021;184(16):4348–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cai L, Luo D, Yao B, et al. Systematic analysis of gene expression in lung adenocarcinoma and squamous cell carcinoma with a case study of FAM83A and FAM83B. Cancers. 2019;11(6):886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Goldman MJ, Craft B, Hastie M, et al. Visualizing and interpreting cancer genomics data via the Xena platform. Nat Biotechnol. 2020;38(6):675–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 2007;8(1):118–27.

    Article  PubMed  Google Scholar 

  16. Cerami E, Gao J, Dogrusoz U, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401–4.

    Article  PubMed  Google Scholar 

  17. Jung H, Kim HS, Kim JY, et al. DNA methylation loss promotes immune evasion of tumours with high mutation and copy number load. Nat Commun. 2019;10(1):4278.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Malta TM, Sokolov A, Gentles AJ, et al. Machine learning identifies stemness features associated with oncogenic dedifferentiation. Cell. 2018;173(2):338-354.e315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wilkerson MD, Hayes DN. ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking. Bioinformatics. 2010;26(12):1572–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bentham RB, Bryson K, Szabadkai G. MCbiclust: a novel algorithm to discover large-scale functionally related gene sets from massive transcriptomics data collections. Nucleic Acids Res. 2017;45(15):8712–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102(43):15545–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 2008;9:559.

    Article  Google Scholar 

  23. Foroutan M, Bhuva DD, Lyu R, Horan K, Cursons J, Davis MJ. Single sample scoring of molecular phenotypes. BMC Bioinform. 2018;19(1):404.

    Article  CAS  Google Scholar 

  24. Langfelder P, Luo R, Oldham MC, Horvath S. Is my network module preserved and reproducible? PLoS Comput Biol. 2011;7(1):e1001057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sturm G, Finotello F, Petitprez F, et al. Comprehensive evaluation of transcriptome-based cell-type quantification methods for immuno-oncology. Bioinformatics. 2019;35(14):i436–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Law CW, Chen Y, Shi W, Smyth GK. voom: Precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 2014;15(2):R29.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Garcia-Alonso L, Iorio F, Matchan A, et al. Transcription factor activities enhance markers of drug sensitivity in cancer. Can Res. 2018;78(3):769–80.

    Article  CAS  Google Scholar 

  29. Trapnell C, Cacchiarelli D, Grimsby J, et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol. 2014;32(4):381–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wu F, Fan J, He Y, et al. Single-cell profiling of tumor heterogeneity and the microenvironment in advanced non-small cell lung cancer. Nat Commun. 2021;12(1):2540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang L, Zhang Y, Wang C, et al. Integrated single-cell RNA sequencing analysis reveals distinct cellular and transcriptional modules associated with survival in lung cancer. Signal Transduct Target Ther. 2022;7(1):9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol. 2018;36(5):411–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gentles AJ, Hui AB, Feng W, et al. A human lung tumor microenvironment interactome identifies clinically relevant cell-type cross-talk. Genome Biol. 2020;21(1):107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Danaher P, Kim Y, Nelson B, et al. Advances in mixed cell deconvolution enable quantification of cell types in spatial transcriptomic data. Nat Commun. 2022;13(1):385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li B, Severson E, Pignon JC, et al. Comprehensive analyses of tumor immunity: implications for cancer immunotherapy. Genome Biol. 2016;17(1):174.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Yin L, Zhang W, Pu D, et al. Identification of immune subtypes of lung squamous cell carcinoma by integrative genome-scale analysis. Front Oncol. 2021;11:778549.

    Article  CAS  PubMed  Google Scholar 

  37. Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39(1):1–10.

    Article  PubMed  Google Scholar 

  38. Szklarczyk D, Gable AL, Nastou KC, et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021;49(D1):D605-d612.

    Article  CAS  PubMed  Google Scholar 

  39. Taylor AM, Shih J, Ha G, et al. Genomic and functional approaches to understanding cancer aneuploidy. Cancer Cell. 2018;33(4):676-689.e673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chu T, Wang Z, Pe’er D, Danko CG. Cell type and gene expression deconvolution with BayesPrism enables Bayesian integrative analysis across bulk and single-cell RNA sequencing in oncology. Nat Cancer. 2022;3(4):505–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schubert M, Klinger B, Klünemann M, et al. Perturbation-response genes reveal signaling footprints in cancer gene expression. Nat Commun. 2018;9(1):20.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Aibar S, González-Blas CB, Moerman T, et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods. 2017;14(11):1083–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinform. 2013;14:7.

    Article  Google Scholar 

  44. Subramanian A, Narayan R, Corsello SM, et al. A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell. 2017;171(6):1437-1452.e1417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chen S, Giannakou A, Wyman S, et al. Cancer-associated fibroblasts suppress SOX2-induced dysplasia in a lung squamous cancer coculture. Proc Natl Acad Sci USA. 2018;115(50):E11671-e11680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Charoentong P, Finotello F, Angelova M, et al. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep. 2017;18(1):248–62.

    Article  CAS  PubMed  Google Scholar 

  47. Wen B, Li K, Zhang Y, Zhang B. Cancer neoantigen prioritization through sensitive and reliable proteogenomics analysis. Nat Commun. 2020;11(1):1759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Malanchi I, Santamaria-Martínez A, Susanto E, et al. Interactions between cancer stem cells and their niche govern metastatic colonization. Nature. 2011;481(7379):85–9.

    Article  PubMed  Google Scholar 

  49. Soltermann A, Tischler V, Arbogast S, et al. Prognostic significance of epithelial-mesenchymal and mesenchymal-epithelial transition protein expression in non-small cell lung cancer. Clin Cancer Res. 2008;14(22):7430–7.

    Article  CAS  PubMed  Google Scholar 

  50. Takahashi Y, Ishii G, Taira T, et al. Fibrous stroma is associated with poorer prognosis in lung squamous cell carcinoma patients. J Thorac Oncol. 2011;6(9):1460–7.

    Article  PubMed  Google Scholar 

  51. Hu S, Ma J, Su C, et al. Engineered exosome-like nanovesicles suppress tumor growth by reprogramming tumor microenvironment and promoting tumor ferroptosis. Acta Biomater. 2021;135:567–81.

    Article  CAS  PubMed  Google Scholar 

  52. Peranzoni E, Lemoine J, Vimeux L, et al. Macrophages impede CD8 T cells from reaching tumor cells and limit the efficacy of anti-PD-1 treatment. Proc Natl Acad Sci USA. 2018;115(17):E4041-e4050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhao J, Xu R, Lu T, Wang J, Zhang L. Identification of tumor antigens and immune subtypes in lung squamous cell carcinoma for mRNA vaccine development. J Thorac Dis. 2022;14(9):3517–30.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Zeng L, Li L, Liao X, Yin C, Zhang L, Sun J. Molecular clusters reveal opportunities for personalised small cell lung cancer immunotherapy. Clin Transl Discov. 2022;2(3):e109.

    Article  Google Scholar 

  55. Zeng L, Li L, Liao X, Zhang L, Yin C, Sun J. Identification of tumor antigens and immune subtypes of early-stage lung squamous cell carcinoma for mRNA vaccine development. Res Square. 2022. https://doi.org/10.21203/rs.3.rs-2219061/v1.

    Article  Google Scholar 

  56. Zhang XC, Wang J, Shao GG, et al. Comprehensive genomic and immunological characterization of Chinese non-small cell lung cancer patients. Nat Commun. 2019;10(1):1772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yang L, Wei S, Zhang J, et al. Construction of a predictive model for immunotherapy efficacy in lung squamous cell carcinoma based on the degree of tumor-infiltrating immune cells and molecular ty**. J Transl Med. 2022;20(1):364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank **ewan Chen for English language editing, and appreciate the data from the TCGA, CPTAC, and GEO datasets.

Funding

This study was supported by the National Natural Science Foundation of China (81773245, 81972858, 82202951 and 82172670), the Technology Innovation and Application Development Project of Chongqing (cstccxljrc201910), and the Cultivation Program for Clinical Research Talents of Army Medical University (2018XLC1010 and 2019XQN10).

Author information

Authors and Affiliations

Authors

Contributions

JS designed the study. LZ and XL collected data. LZ and LL performed analyses. LZ, LZ, and CY wrote the text. All authors reviewed the manuscript.

Corresponding author

Correspondence to Jianguo Sun.

Ethics declarations

Competing interests

Not applicable.

Ethical approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (ZIP 36 kb)

Supplementary file2 (XLSX 798 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, L., Li, L., Liao, X. et al. Population-based high-dimensional analyses identify multiple intrinsic characters for cancer vaccines against lung squamous cell carcinoma. Med Oncol 41, 42 (2024). https://doi.org/10.1007/s12032-023-02214-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02214-3

Keywords

Navigation