Log in

Oncolytic viruses against cancer, promising or delusion?

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Cancer treatment is one of the most challenging topics in medical sciences. Different methods such as chemotherapy, tumor surgery, and immune checkpoint inhibitors therapy (ICIs) are potential approaches to treating cancer and killing tumor cells, but clinical studies have shown that they have been successful for a limited group of patients. Using viruses as a treatment can be considered as an effective treatment in the field of medicine. This is considered as a potential treatment, especially in comparison to chemotherapy, which has severe side effects related to the immune system. Most oncolytic viruses (OVs) have the potential to multiply in cancer cells, which are more than normal cells in malignant tissue and can induce immune responses. Therefore, tons of efforts and research have been started on the utilization of OVs as a treatment for cancer and have shown promising in treating cancers with less side effects. In this article, we have gathered studies about oncolytic viruses and their effectiveness in cancer treatment.Please confirm if the author names are presented accurately and in the correct sequence (given name, middle name/initial, family name). Author 1 Given name: [Omid Salahi] Last name [Ardekani], Author 2 Given name: [Mohammad Mehdi] Last name [Fazeli], Author 3 Given name: [Nillofar Asadi] Last name [Jemezghani]. Also, kindly confirm the details in the metadata are correct.Confirmed

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bray F, Laversanne M, Weiderpass E, Soerjomataram I. The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer. 2021;127(16):3029–30.

    Article  PubMed  Google Scholar 

  2. Faguet GB. A brief history of cancer: age-old milestones underlying our current knowledge database. Int J Cancer. 2015;136(9):2022–36.

    Article  CAS  PubMed  Google Scholar 

  3. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J Clin. 2021;71(3):209–49.

    PubMed  Google Scholar 

  4. Hoffmann D, Bangen J, Bayer W, Wildner O. Synergy between expression of fusogenic membrane proteins, chemotherapy and facultative virotherapy in colorectal cancer. Gene Ther. 2006;13(21):1534–44.

    Article  CAS  PubMed  Google Scholar 

  5. Francis L, Guo ZS, Liu Z, Ravindranathan R, Urban JA, Sathaiah M, et al. Modulation of chemokines in the tumor microenvironment enhances oncolytic virotherapy for colorectal cancer. Oncotarget. 2016;7(16):22174.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sudhakar A. History of cancer, ancient and modern treatment methods. J Cancer Sci Ther. 2009;1(2):1.

    Article  PubMed  Google Scholar 

  7. Iwai Y, Hamanishi J, Chamoto K, Honjo T. Cancer immunotherapies targeting the PD-1 signaling pathway. J Biomed Sci. 2017;24(1):1–11.

    Article  Google Scholar 

  8. Schiller JT, Lowy DR. An introduction to virus infections and human cancer. Viruses and Human Cancer: From Basic Science to Clinical Prevention. 2021:1–11.

  9. Kooti W, Esmaeili Gouvarchin Ghaleh H, Farzanehpour M, Dorostkar R, Jalali Kondori B, Bolandian M. Oncolytic viruses and cancer, do you know the main mechanism? Front Oncol. 2021;11:761015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lin CZ, **ang GL, Zhu XH, **u LL, Sun JX, Zhang XY. Advances in the mechanisms of action of cancer-targeting oncolytic viruses. Oncol Lett. 2018;15(4):4053–60.

    PubMed  PubMed Central  Google Scholar 

  11. Pasquinucci G. Possible effect of measles on leukaemia. Lancet. 1971;297(7690):136.

    Article  Google Scholar 

  12. Heise C, Sampson-Johannes A, Williams A, Mccormick F, Von Hoff DD, Kirn DH. ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nat Med. 1997;3(6):639–45.

    Article  CAS  PubMed  Google Scholar 

  13. Liu B, Robinson M, Han Z, Branston R, English C, Reay P, et al. ICP34. 5 deleted herpes simplex virus with enhanced oncolytic, immune stimulating, and anti-tumour properties. Gene Ther. 2003;10(4):292–303.

    Article  CAS  PubMed  Google Scholar 

  14. Alberts P, Tilgase A, Rasa A, Bandere K, Venskus D. The advent of oncolytic virotherapy in oncology: The Rigvir® story. Eur J Pharmacol. 2018;837:117–26.

    Article  CAS  PubMed  Google Scholar 

  15. Wei D, Xu J, Liu X-Y, Chen Z-N, Bian H. Fighting cancer with viruses: oncolytic virus therapy in China. Hum Gene Ther. 2018;29(2):151–9.

    Article  CAS  PubMed  Google Scholar 

  16. Raman SS, Hecht JR, Chan E. Talimogene laherparepvec: review of its mechanism of action and clinical efficacy and safety. Immunotherapy. 2019;11(8):705–23.

    Article  CAS  PubMed  Google Scholar 

  17. Sugawara K, Iwai M, Ito H, Tanaka M, Seto Y, Todo T. Oncolytic herpes virus G47Δ works synergistically with CTLA-4 inhibition via dynamic intratumoral immune modulation. Mol Ther Oncolytics. 2021;22:129–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu Y-T, Strugatsky D, Liu W, Zhou ZH. Structure of human cytomegalovirus virion reveals host tRNA binding to capsid-associated tegument protein pp150. Nat Commun. 2021;12(1):5513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kaufman HL, Kohlhapp FJ, Zloza A. Oncolytic viruses: a new class of immunotherapy drugs. Nat Rev Drug Discov. 2015;14(9):642–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Conry RM, Westbrook B, McKee S, Norwood TG. Talimogene laherparepvec: first in class oncolytic virotherapy. Hum Vaccin Immunother. 2018;14(4):839–46.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Cao G-d, He X-b, Sun Q, Chen S, Wan K, Xu X, et al. The oncolytic virus in cancer diagnosis and treatment. Front Oncol. 2020;10:1786.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Toda M, Rabkin SD, Martuza RL. Treatment of human breast cancer in a brain metastatic model by G207, a replication-competent multimutated herpes simplex virus 1. Hum Gene Ther. 1998;9(15):2177–85.

    Article  CAS  PubMed  Google Scholar 

  23. Chahlavi A, Todo T, Martuza RL, Rabkin SD. Replication-competent herpes simplex virus vector G207 and cisplatin combination therapy for head and neck squamous cell carcinoma. Neoplasia. 1999;1(2):162–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Puzanov I, Milhem MM, Minor D, Hamid O, Li A, Chen L, et al. Talimogene laherparepvec in combination with ipilimumab in previously untreated, unresectable stage IIIB-IV melanoma. J Clin Oncol. 2016;34(22):2619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Markert JM, Razdan SN, Kuo H-C, Cantor A, Knoll A, Karrasch M, et al. A phase 1 trial of oncolytic HSV-1, G207, given in combination with radiation for recurrent GBM demonstrates safety and radiographic responses. Mol Ther. 2014;22(5):1048–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kennedy EM, Farkaly T, Behera P, Colthart A, Goshert C, Jacques J, et al. Design of ONCR-177 base vector, a next generation oncolytic herpes simplex virus type-1, optimized for robust oncolysis, transgene expression and tumor-selective replication. Cancer Res. 2019;79(13_Supplement):1455.

    Article  Google Scholar 

  27. Bommareddy PK, Shettigar M, Kaufman HL. Integrating oncolytic viruses in combination cancer immunotherapy. Nat Rev Immunol. 2018;18(8):498–513.

    Article  CAS  PubMed  Google Scholar 

  28. Takasu A, Masui A, Hamada M, Imai T, Iwai S, Yura Y. Immunogenic cell death by oncolytic herpes simplex virus type 1 in squamous cell carcinoma cells. Cancer Gene Ther. 2016;23(4):107–13.

    Article  CAS  PubMed  Google Scholar 

  29. Yin J, Markert JM, Leavenworth JW. Modulation of the intratumoral immune landscape by oncolytic herpes simplex virus virotherapy. Front Oncol. 2017;7:136.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Watanabe D, Goshima F, Mori I, Tamada Y, Matsumoto Y, Nishiyama Y. Oncolytic virotherapy for malignant melanoma with herpes simplex virus type 1 mutant HF10. J Dermatol Sci. 2008;50(3):185–96.

    Article  CAS  PubMed  Google Scholar 

  31. Davison AJ. Herpesvirus systematics. Vet Microbiol. 2010;143(1):52–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Herbein G, Nehme Z. Tumor control by cytomegalovirus: a door open for oncolytic virotherapy? Mol Therapy-Oncolytics. 2020;17:1–8.

    Article  CAS  Google Scholar 

  33. Massara L, Khairallah C, Yared N, Pitard V, Rousseau B, Izotte J, et al. Uncovering the anticancer potential of murine cytomegalovirus against human colon cancer cells. Molecular Therapy-Oncolytics. 2020;16:250–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xu G, Smith T, Grey F, Hill AB. Cytomegalovirus-based cancer vaccines expressing TRP2 induce rejection of melanoma in mice. Biochem Biophys Res Commun. 2013;437(2):287–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zeh HJ, Bartlett DL. Development of a replication-selective, oncolytic poxvirus for the treatment of human cancers. Cancer Gene Ther. 2002;9(12):1001–12.

    Article  CAS  PubMed  Google Scholar 

  36. Chaurasiya S, Fong Y, Warner SG. Oncolytic virotherapy for cancer: clinical experience. Biomedicines. 2021;9(4):419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cripe TP, Ngo MC, Geller JI, Louis CU, Currier MA, Racadio JM, et al. Phase 1 study of intratumoral Pexa-Vec (JX-594), an oncolytic and immunotherapeutic vaccinia virus, in pediatric cancer patients. Mol Ther. 2015;23(3):602–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang Z, Guo K, Liu Y, Huang C, Wu M. Dynamic impact of virome on colitis and colorectal cancer: immunity, inflammation, prevention and treatment. Semin Cancer Biol. 2022;86:943–54.

    Article  CAS  PubMed  Google Scholar 

  39. Liu T-C, Hwang T, Park B-H, Bell J, Kirn DH. The targeted oncolytic poxvirus JX-594 demonstrates antitumoral, antivascular, and anti-HBV activities in patients with hepatocellular carcinoma. Mol Ther. 2008;16(9):1637–42.

    Article  CAS  PubMed  Google Scholar 

  40. Heo J, Breitbach CJ, Moon A, Kim CW, Patt R, Kim MK, et al. Sequential therapy with JX-594, a targeted oncolytic poxvirus, followed by sorafenib in hepatocellular carcinoma: preclinical and clinical demonstration of combination efficacy. Mol Ther. 2011;19(6):1170–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nemerow GR, Stewart PL, Reddy VS. Structure of human adenovirus. Curr Opin Virol. 2012;2(2):115–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yu W, Fang H. Clinical trials with oncolytic adenovirus in China. Curr Cancer Drug Targets. 2007;7(2):141–8.

    Article  PubMed  Google Scholar 

  43. Illingworth S, Di Y, Bauzon M, Lei J, Duffy MR, Alvis S, et al. Preclinical safety studies of enadenotucirev, a chimeric group B human-specific oncolytic adenovirus. Mol Ther Oncolytics. 2017;5:62–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kiyokawa J, Wakimoto H. Preclinical and clinical development of oncolytic adenovirus for the treatment of malignant glioma. Oncolytic Virother. 2019;8:27–37.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zhao Y, Liu Z, Li L, Wu J, Zhang H, Zhang H, et al. Oncolytic adenovirus: prospects for cancer immunotherapy. Front Microbiol. 2021. https://doi.org/10.3389/fmicb.2021.707290.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Eriksson E, Milenova I, Wenthe J, Ståhle M, Leja-Jarblad J, Ullenhag G, et al. Sha** the tumor stroma and sparking immune activation by CD40 and 4–1BB signaling induced by an armed oncolytic virusAn armed adenovirus sha** the tumor micro milieu. Clin Cancer Res. 2017;23(19):5846–57.

    Article  CAS  PubMed  Google Scholar 

  47. Tassone E, Muscolini M, van Montfoort N, Hiscott J. Oncolytic virotherapy for pancreatic ductal adenocarcinoma: a glimmer of hope after years of disappointment? Cytokine Growth Factor Rev. 2020;56:141–8.

    Article  CAS  PubMed  Google Scholar 

  48. Fueyo J, Alemany R, Gomez-Manzano C, Fuller GN, Khan A, Conrad CA, et al. Preclinical characterization of the antiglioma activity of a tropism-enhanced adenovirus targeted to the retinoblastoma pathway. J Natl Cancer Inst. 2003;95(9):652–60.

    Article  CAS  PubMed  Google Scholar 

  49. Fueyo J, Gomez-Manzano C, Alemany R, Lee PS, McDonnell TJ, Mitlianga P, et al. A mutant oncolytic adenovirus targeting the Rb pathway produces anti-glioma effect in vivo. Oncogene. 2000;19(1):2–12.

    Article  CAS  PubMed  Google Scholar 

  50. Philbrick B, Adamson DC. DNX-2401: an investigational drug for the treatment of recurrent glioblastoma. Expert Opin Investig Drugs. 2019;28(12):1041–9.

    Article  CAS  PubMed  Google Scholar 

  51. Banijamali RS, Soleimanjahi H, Soudi S, Karimi H, Abdoli A, Khorrami SMS, et al. Kinetics of oncolytic reovirus T3D replication and growth pattern in mesenchymal stem cells. Cell Journal (Yakhteh). 2020;22(3):283.

    Google Scholar 

  52. Harrington K, Vile R, Melcher A, Chester J, Pandha H. Clinical trials with oncolytic reovirus: moving beyond phase I into combinations with standard therapeutics. Cytokine Growth Factor Rev. 2010;21(2–3):91–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Joklik WK. The reoviridae. Cham: Springer Science & Business Media; 2013.

    Google Scholar 

  54. Norman KL, Lee PW. Reovirus as a novel oncolytic agent. J Clin Investig. 2000;105(8):1035–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Vidal L, Pandha HS, Yap TA, White CL, Twigger K, Vile RG, et al. A phase I study of intravenous oncolytic reovirus type 3 dearing in patients with advanced cancer. Clin Cancer Res. 2008;14(21):7127–37.

    Article  CAS  PubMed  Google Scholar 

  56. Sahin E, Egger ME, McMasters KM, Zhou HS. Development of oncolytic reovirus for cancer therapy. J Cancer Ther. 2013;4(6):1100–15.

    Article  Google Scholar 

  57. Samson A, Bentham MJ, Scott K, Nuovo G, Bloy A, Appleton E, et al. Oncolytic reovirus as a combined antiviral and anti-tumour agent for the treatment of liver cancer. Gut. 2018;67(3):562–73.

    Article  CAS  PubMed  Google Scholar 

  58. Parato KA, Senger D, Forsyth PA, Bell JC. Recent progress in the battle between oncolytic viruses and tumours. Nat Rev Cancer. 2005;5(12):965–76.

    Article  CAS  PubMed  Google Scholar 

  59. Rosen L, Evans HE, Spickard A. Reovirus infections in human volunteers. Am J Hyg. 1963;77(1):29–37.

    CAS  PubMed  Google Scholar 

  60. Hashiro G, Loh P, Yau JT. The preferential cytotoxicity of reovirus for certain transformed cell lines. Adv Virol. 1977;54(4):307–15.

    CAS  Google Scholar 

  61. Strong JE, Tang D, Lee PW. Evidence that the epidermal growth factor receptor on host cells confers reovirus infection efficiency. Virology. 1993;197(1):405–11.

    Article  CAS  PubMed  Google Scholar 

  62. Alain T, Hirasawa K, Pon KJ, Nishikawa SG, Urbanski SJ, Auer Y, et al. Reovirus therapy of lymphoid malignancies. Blood J Am Soc Hematol. 2002;100(12):4146–53.

    CAS  Google Scholar 

  63. Coffey MC, Strong JE, Forsyth PA, Lee PW. Reovirus therapy of tumors with activated Ras pathway. Science. 1998;282(5392):1332–4.

    Article  CAS  PubMed  Google Scholar 

  64. Etoh T, Himeno Y, Matsumoto T, Aramaki M, Kawano K, Nishizono A, et al. Oncolytic viral therapy for human pancreatic cancer cells by reovirus. Clin Cancer Res. 2003;9(3):1218–23.

    CAS  PubMed  Google Scholar 

  65. Hirasawa K, Nishikawa SG, Norman KL, Alain T, Kossakowska A, Lee PW. Oncolytic reovirus against ovarian and colon cancer. Can Res. 2002;62(6):1696–701.

    CAS  Google Scholar 

  66. Norman KL, Coffey MC, Hirasawa K, Demetrick DJ, Nishikawa SG, DiFrancesco LM, et al. Reovirus oncolysis of human breast cancer. Hum Gene Ther. 2002;13(5):641–52.

    Article  CAS  PubMed  Google Scholar 

  67. Wilcox ME, Yang W, Senger D, Rewcastle NB, Morris DG, Brasher PM, et al. Reovirus as an oncolytic agent against experimental human malignant gliomas. J Natl Cancer Inst. 2001;93(12):903–12.

    Article  CAS  PubMed  Google Scholar 

  68. Strong JE, Coffey MC, Tang D, Sabinin P, Lee PW. The molecular basis of viral oncolysis: usurpation of the Ras signaling pathway by reovirus. EMBO J. 1998;17(12):3351–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Clements D, Helson E, Gujar SA, Lee PW. Reovirus in cancer therapy: an evidence-based review. Oncolytic Virother. 2014. https://doi.org/10.2147/OV.S51321.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Morris DG, Feng X, DiFrancesco LM, Fonseca K, Forsyth PA, Paterson AH, et al. REO-001: A phase I trial of percutaneous intralesional administration of reovirus type 3 dearing (Reolysin®) in patients with advanced solid tumors. Invest New Drugs. 2013;31:696–706.

    Article  CAS  PubMed  Google Scholar 

  71. Galanis E, Markovic SN, Suman VJ, Nuovo GJ, Vile RG, Kottke TJ, et al. Phase II trial of intravenous administration of Reolysin®(Reovirus Serotype-3-dearing Strain) in patients with metastatic melanoma. Mol Ther. 2012;20(10):1998–2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Doniņa S, Strēle I, Proboka G, Auziņš J, Alberts P, Jonsson B, et al. Adapted ECHO-7 virus Rigvir immunotherapy (oncolytic virotherapy) prolongs survival in melanoma patients after surgical excision of the tumour in a retrospective study. Melanoma Res. 2015;25(5):421.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Yao M, Xu C, Shen H, Liu T, Wang X, Shao C, et al. The regulatory role of miR-107 in Coxsackie B3 virus replication. Aging (Albany NY). 2020;12(14):14467.

    Article  CAS  PubMed  Google Scholar 

  74. Nie X, Li H, Wang J, Cai Y, Fan J, Dai B, et al. Expression profiles and potential functions of long non-coding RNAs in the heart of mice with Coxsackie B3 virus-induced myocarditis. Front Cell Infect Microbiol. 2021. https://doi.org/10.3389/fcimb.2021.704919.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Zautner AE, Jahn B, Hammerschmidt E, Wutzler P, Schmidtke M. N-and 6-O-sulfated heparan sulfates mediate internalization of coxsackievirus B3 variant PD into CHO-K1 cells. J Virol. 2006;80(13):6629–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Miyamoto S, Inoue H, Nakamura T, Yamada M, Sakamoto C, Urata Y, et al. Coxsackievirus B3 Is an oncolytic virus with immunostimulatory properties that is active against lung adenocarcinomacoxsackievirus B3 in oncolytic virotherapy. Can Res. 2012;72(10):2609–21.

    Article  CAS  Google Scholar 

  77. Au GG, Lincz LF, Enno A, Shafren DR. Oncolytic Coxsackievirus A21 as a novel therapy for multiple myeloma. Br J Haematol. 2007;137(2):133–41.

    Article  CAS  PubMed  Google Scholar 

  78. Venkataraman S, Reddy SP, Loo J, Idamakanti N, Hallenbeck PL, Reddy VS. Structure of Seneca Valley Virus-001: an oncolytic picornavirus representing a new genus. Structure. 2008;16(10):1555–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yu L, Baxter PA, Zhao X, Liu Z, Wadhwa L, Zhang Y, et al. A single intravenous injection of oncolytic picornavirus SVV-001 eliminates medulloblastomas in primary tumor-based orthotopic xenograft mouse models. Neuro Oncol. 2010;13(1):14–27.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Wadhwa L, Hurwitz MY, Chévez-Barrios P, Hurwitz RL. Treatment of invasive retinoblastoma in a murine model using an oncolytic picornavirus. Can Res. 2007;67(22):10653–6.

    Article  CAS  Google Scholar 

  81. Liu Z, Zhao X, Mao H, Baxter PA, Huang Y, Yu L, et al. Intravenous injection of oncolytic picornavirus SVV-001 prolongs animal survival in a panel of primary tumor–based orthotopic xenograft mouse models of pediatric glioma. Neuro Oncol. 2013;15(9):1173–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Schenk EL, Mandrekar SJ, Dy GK, Aubry MC, Tan AD, Dakhil SR, et al. A randomized double-blind phase II study of the Seneca valley virus (NTX-010) versus placebo for patients with extensive-stage SCLC (ES SCLC) who were stable or responding after at least four cycles of platinum-based chemotherapy: North central cancer treatment group (Alliance) N0923 study. J Thorac Oncol. 2020;15(1):110–9.

    Article  CAS  PubMed  Google Scholar 

  83. Burke MJ. (2016) Oncolytic Seneca Valley Virus: past perspectives and future directions. Oncolytic Virotherapy.:81–9.

  84. Miles LA, Burga LN, Gardner EE, Bostina M, Poirier JT, Rudin CM. Anthrax toxin receptor 1 is the cellular receptor for Seneca Valley virus. J Clin Investig. 2017;127(8):2957–67.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Xue Q, Liu H, Zhu Z, Yang F, Ma L, Cai X, et al. Seneca Valley Virus 3Cpro abrogates the IRF3-and IRF7-mediated innate immune response by degrading IRF3 and IRF7. Virology. 2018;518:1–7.

    Article  CAS  PubMed  Google Scholar 

  86. Luo D, Wang H, Wang Q, Liang W, Liu B, Xue D, et al. Senecavirus a as an oncolytic virus: prospects, challenges and development directions. Front Oncol. 2022. https://doi.org/10.3389/fonc.2022.839536.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Rose J, Schubert M. Rhabdovirus genomes and their products. In: The rhabdoviruses. Boston: Springer; 1987. p. 129–66.

    Chapter  Google Scholar 

  88. Zemp F, Rajwani J, Mahoney DJ. Rhabdoviruses as vaccine platforms for infectious disease and cancer. Biotechnol Genet Eng Rev. 2018;34(1):122–38.

    Article  CAS  PubMed  Google Scholar 

  89. Sasso E, D’Alise AM, Zambrano N, Scarselli E, Folgori A, Nicosia A. New viral vectors for infectious diseases and cancer. Sem Immunol. 2020. https://doi.org/10.1016/j.smim.2020.101430.

    Article  Google Scholar 

  90. Jadhav A, Zhao L, Ledda A, Liu W, Ding C, Nair V, et al. Patterns of RNA editing in newcastle disease virus infections. Viruses. 2020;12(11):1249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kgotlele T, Modise B, Nyange JF, Thanda C, Cattoli G, Dundon WG. First molecular characterization of avian paramyxovirus-1 (Newcastle disease virus) in Botswana. Virus Genes. 2020;56(5):646–50.

    Article  CAS  PubMed  Google Scholar 

  92. Cheng X, Wang W, Xu Q, Harper J, Carroll D, Galinski MS, et al. Genetic modification of oncolytic Newcastle disease virus for cancer therapy. J Virol. 2016;90(11):5343–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Keshavarz M, Nejad ASM, Esghaei M, Bokharaei-Salim F, Dianat-Moghadam H, Keyvani H, et al. Oncolytic Newcastle disease virus reduces growth of cervical cancer cell by inducing apoptosis. Saudi J Biol Sci. 2020;27(1):47–52.

    Article  CAS  PubMed  Google Scholar 

  94. Najmuddin SUFS, Amin ZM, Tan SW, Yeap SK, Kalyanasundram J, Ani MAC, et al. Cytotoxicity study of the interleukin-12-expressing recombinant Newcastle disease virus strain, rAF-IL12, towards CT26 colon cancer cells in vitro and in vivo. Cancer Cell Int. 2020;20:1–18.

    Article  Google Scholar 

  95. Zhu J, Zhou H, Zou W, ** M. Effect of human activated NRAS on replication of delNS1 H5N1 influenza virus in MDCK cells. Virol J. 2011;8(1):1–5.

    Article  Google Scholar 

  96. van Rikxoort M, Michaelis M, Wolschek M, Muster T, Egorov A, Seipelt J, et al. Oncolytic effects of a novel influenza A virus expressing interleukin-15 from the NS reading frame. PLoS ONE. 2012;7(5):e36506.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Rubin S, Eckhaus M, Rennick LJ, Bamford CG, Duprex WP. Molecular biology, pathogenesis and pathology of mumps virus. J Pathol. 2015;235(2):242–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Son HA, Zhang L, Cuong BK, Van Tong H, Cuong LD, Hang NT, et al. Combination of vaccine-strain measles and mumps viruses enhances oncolytic activity against human solid malignancies. Cancer Invest. 2018;36(2):106–17.

    Article  CAS  PubMed  Google Scholar 

  99. Sato M, Urade M, Sakuda M, Shirasuna K, Yoshida H, Maeda N, et al. Attenuated mumps virus therapy of carcinoma of the maxillary sinus. Int J Oral Surg. 1979;8(3):205–11.

    Article  CAS  PubMed  Google Scholar 

  100. Ulane CM, Rodriguez JJ, Parisien J-P, Horvath CM. STAT3 ubiquitylation and degradation by mumps virus suppress cytokine and oncogene signaling. J Virol. 2003;77(11):6385–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ammayappan A, Russell SJ, Federspiel MJ. Recombinant mumps virus as a cancer therapeutic agent. Mol Ther Oncolytics. 2016;3:16019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Alirezaie B, Mohammadi A, Langeroudi AG, Fallahi R, Khosravi AR. Intrinsic oncolytic activity of hoshino mumps virus vaccine strain against human fibrosarcoma and cervical cancer cell lines. Int J Cancer Manag. 2020. https://doi.org/10.5812/ijcm.103111.

    Article  Google Scholar 

  103. Kubota T, Yokosawa N, Yokota S-i, Fujii N. C terminal CYS-RICH region of mumps virus structural V protein correlates with block of interferon α and γ signal transduction pathway through decrease of STAT 1-α. Biochem Biophys Res Commun. 2001;283(1):255–9.

    Article  CAS  PubMed  Google Scholar 

  104. Kantarjian HM, DeAngelo DJ, Stelljes M, Martinelli G, Liedtke M, Stock W, et al. Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia. N Engl J Med. 2016;375(8):740–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ramakrishnan MS, Eswaraiah A, Crombet T, Piedra P, Saurez G, Iyer H, et al. Nimotuzumab, a promising therapeutic monoclonal for treatment of tumors of epithelial origin. MAbs. 2009. https://doi.org/10.4161/mabs.1.1.7509.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Msaouel P, Opyrchal M, Dispenzieri A, Whye Peng K, Federspiel M, Russel JS, et al. Clinical trials with oncolytic measles virus: current status and future prospects. Curr Cancer Drug Targets. 2018;18(2):177–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ong HT, Timm MM, Greipp PR, Witzig TE, Dispenzieri A, Russell SJ, et al. Oncolytic measles virus targets high CD46 expression on multiple myeloma cells. Exp Hematol. 2006;34(6):713–20.

    Article  CAS  PubMed  Google Scholar 

  108. Lin L-T, Richardson CD. The host cell receptors for measles virus and their interaction with the viral hemagglutinin (H) protein. Viruses. 2016;8(9):250.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Galanis E, Hartmann LC, Cliby WA, Long HJ, Peethambaram PP, Barrette BA, et al. Phase I trial of intraperitoneal administration of an oncolytic measles virus strain engineered to express carcinoembryonic antigen for recurrent ovarian cancer. Can Res. 2010;70(3):875–82.

    Article  CAS  Google Scholar 

  110. Galanis E, Atherton PJ, Maurer MJ, Knutson KL, Dowdy SC, Cliby WA, et al. Oncolytic measles virus expressing the sodium iodide symporter to treat drug-resistant ovarian cancer. Can Res. 2015;75(1):22–30.

    Article  CAS  Google Scholar 

  111. Brun J, McManus D, Lefebvre C, Hu K, Falls T, Atkins H, et al. Identification of genetically modified Maraba virus as an oncolytic rhabdovirus. Mol Ther. 2010;18(8):1440–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hassanzadeh G, Naing T, Graber T, Jafarnejad SM, Stojdl DF, Alain T, et al. Characterizing cellular responses during oncolytic maraba virus infection. Int J Mol Sci. 2019;20(3):580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Tong JG, Valdes YR, Sivapragasam M, Barrett JW, Bell JC, Stojdl D, et al. Spatial and temporal epithelial ovarian cancer cell heterogeneity impacts Maraba virus oncolytic potential. BMC Cancer. 2017;17:1–13.

    Article  Google Scholar 

  114. Le Boeuf F, Selman M, Son HH, Bergeron A, Chen A, Tsang J, et al. Oncolytic maraba virus MG1 as a treatment for sarcoma. Int J Cancer. 2017;141(6):1257–64.

    Article  PubMed  Google Scholar 

  115. Hu P-Y, Fan X-M, Zhang Y-N, Wang S-B, Wan W-J, Pan H-Y, et al. The limiting factors of oncolytic virus immunotherapy and the approaches to overcome them. Appl Microbiol Biotechnol. 2020;104:8231–42.

    Article  CAS  PubMed  Google Scholar 

  116. Lauer UM, Beil J. Oncolytic viruses: challenges and considerations in an evolving clinical landscape. Future Oncol. 2022;18(24):2713–32.

    Article  CAS  Google Scholar 

  117. Hong J, Yun C-O. Overcoming the limitations of locally administered oncolytic virotherapy. BMC Biomed Eng. 2019;1:1–11.

    Article  Google Scholar 

  118. Zou H, Mou XZ, Zhu B. Combining of oncolytic virotherapy and other immunotherapeutic approaches in cancer: a powerful functionalization tactic. Global Chall. 2023;7(1):2200094.

    Article  Google Scholar 

  119. Zheng M, Huang J, Tong A, Yang H. Oncolytic viruses for cancer therapy: barriers and recent advances. Mol Ther Oncolytics. 2019;15:234–47.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Zygiert Z. Hodgkin’s disease: remissions after measles. Lancet. 1971;297(7699):593.

    Article  Google Scholar 

  121. Bluming A, Ziegler J. Regression of Burkitt’s lymphoma in association with measles infection. Lancet. 1971. https://doi.org/10.1016/S0140-6736(71)92086-1.

    Article  PubMed  Google Scholar 

  122. Still GF. On a form of chronic joint disease in children. Med Chir Trans. 1897;80:47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. De Pace N. Sulla scomparsa di un enorme cancro vegetante del collo dell'utero senza cura chirurgica. 1912

  124. Onuigbo WI. Historical trends in cancer surgery. Med Hist. 1962;6(2):154–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Carter SK. Immunotherapy of cancer in man: current status and prospectus. Ann N Y Acad Sci. 1976;277(1):722–40.

    Article  CAS  PubMed  Google Scholar 

  126. Pack GT. Note on the experimental use of rabies vaccine for melanomatosis. AMA Arch Derm Syphilol. 1950;62(5):694–5.

    Article  CAS  PubMed  Google Scholar 

  127. Leaf C. Why we’re losing the war on cancer (and how to win it). Fortune-European Edition-. 2004;149(5):42–55.

    Google Scholar 

  128. Wakimoto H, Ikeda K, Abe T, Ichikawa T, Hochberg FH, Ezekowitz RAB, et al. The complement response against an oncolytic virus is species-specific in its activation pathways. Mol Ther. 2002;5(3):275–82.

    Article  CAS  PubMed  Google Scholar 

  129. Ebert O, Harbaran S, Shinozaki K, Woo SL. Systemic therapy of experimental breast cancer metastases by mutant vesicular stomatitis virus in immune-competent mice. Cancer Gene Ther. 2005;12(4):350–8.

    Article  CAS  PubMed  Google Scholar 

  130. Dragunsky E, Taffs R, Chernokhvostova Y, Nomura T, Hioki K, Gardner D, et al. A Poliovirus-susceptible transgenic mouse model as a possible replacement for the monkey neurovirulencetest of oral poliovirus vaccine. Biologicals. 1996;24(2):77–86.

    Article  CAS  PubMed  Google Scholar 

  131. Moore AE. Viruses with oncolytic properties and their adaptation to tumors. Ann N Y Acad Sci. 1952;54(6):945–52.

    Article  CAS  PubMed  Google Scholar 

  132. Southam CM. Division of microbiology: present status of oncolytic virus studies. Trans New York Acad Sci. 1960;22(8 Series II):657–73.

    Article  CAS  Google Scholar 

  133. Misra S. Human gene therapy: a brief overview of the genetic revolution. J Assoc Physicians India. 2013;61(2):127–33.

    PubMed  Google Scholar 

  134. Kohlhapp F, Zloza A, Kaufman H. Talimogene laherparepvec (T-VEC) as cancer immunotherapy. Drugs Today. 2015;51(9):549–58.

    Article  CAS  Google Scholar 

  135. Dörig RE, Marcil A, Chopra A, Richardson CD. The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell. 1993;75(2):295–305.

    Article  PubMed  Google Scholar 

  136. Carlsten M, Norell H, Bryceson YT, Poschke I, Schedvins K, Ljunggren H-G, et al. Primary human tumor cells expressing CD155 impair tumor targeting by down-regulating DNAM-1 on NK cells. J Immunol. 2009;183(8):4921–30.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jila Yavarian.

Ethics declarations

Conflict of interest

Authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Letafati, A., Ardekani, O.S., Naderisemiromi, M. et al. Oncolytic viruses against cancer, promising or delusion?. Med Oncol 40, 246 (2023). https://doi.org/10.1007/s12032-023-02106-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02106-6

Keywords

Navigation