Log in

Panobinostat (LBH589) increase survival in adult xenografic model of acute lymphoblastic leukemia with t(4;11) but promotes antagonistic effects in combination with MTX and 6MP

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Patients diagnosed with acute lymphoblastic leukemia (ALL) bearing t(4;11)/MLL-AF4 have aggressive clinical features, poor prognosis and there is an urgent need for new therapies to improve outcomes. Panobinostat (LBH589) has been identified as a potential therapeutic agent for ALL with t(4;11) and studies suggest that the antineoplastic effects are associated with reduced MLL-AF4 fusion protein and reduced expression of HOX genes. Here, we evaluated the in vitro effects of the combination of LBH589 with methotrexate (MTX) or 6-mercaptopurine (6MP) by cell proliferation assays and Calcusyn software in ALL cell line (RS4;11); the in vivo effects of LBH589 in xenotransplanted NOD-scid IL2Rgammanull mice measuring human lymphoblasts by flow cytometry; and the expression of HOX genes by qPCR after treatment in an adult model of ALL with t(4;11). LBH589 combination with MTX or 6MP did not promote synergistic effects in RS4;11 cell line. LBH589 treatment leads to increased overall survival and reduction of blasts in xenotransplanted mice but caused no significant changes in HOXA7, HOXA9, HOXA10, and MEIS1 expression. The LBH589, alone, showed promising antineoplastic effects in vivo and may represent a potential agent for chemotherapy in ALL patients with t(4;11).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Holmfeldt L, Wei L, Diaz-Flores E, Walsh M, Zhang J, Ding L, et al. The genomic landscape of hypodiploid acute lymphoblastic leukemia. Nat Genet. 2013;45:242–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA A Cancer J Clin. 2022;72:7–33.

    Article  Google Scholar 

  3. Terwilliger T, Abdul-Hay M. Acute lymphoblastic leukemia: a comprehensive review and 2017 update. Blood Cancer J. 2017;7:e577–e577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Scrideli CA, Assumpcao JG, Ganazza MA, Araujo M, Toledo SR, Lee MLM, et al. A simplified minimal residual disease polymerase chain reaction method at early treatment points can stratify children with acute lymphoblastic leukemia into good and poor outcome groups. Haematologica. 2009;94:781–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pui C-H, Jeha S. New therapeutic strategies for the treatment of acute lymphoblastic leukaemia. Nat Rev Drug Discov. 2007;6:149–65.

    Article  CAS  PubMed  Google Scholar 

  6. Pui C-H, Evans WE. A 50-year journey to cure childhood acute lymphoblastic leukemia. Semin Hematol. 2013;50:185–96.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Pui C-H, Evans WE. Treatment of acute lymphoblastic leukemia. N Engl J Med. 2006;354:166–78.

    Article  CAS  PubMed  Google Scholar 

  8. Pui C-H, Carroll WL, Meshinchi S, Arceci RJ. Biology, risk stratification, and therapy of pediatric acute leukemias: an update. J Clin Oncol. 2011;29:551–65.

    Article  PubMed  Google Scholar 

  9. Malouf C, Antunes ETB, O’Dwyer M, Jakobczyk H, Sahm F, Landua S-L, et al. miR-130b and miR-128a are essential lineage-specific codrivers of t(4;11) MLL-AF4 acute leukemia. Blood. 2021;138:2066–92.

    Article  CAS  PubMed  Google Scholar 

  10. Rice S, Jackson T, Crump NT, Fordham N, Elliott N, O’Byrne S, et al. A human fetal liver-derived infant MLL-AF4 acute lymphoblastic leukemia model reveals a distinct fetal gene expression program. Nat Commun. 2021;12:6905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sanjuan-Pla A, Bueno C, Prieto C, Acha P, Stam RW, Marschalek R, et al. Revisiting the biology of infant t(4;11)/MLL-AF4+ B-cell acute lymphoblastic leukemia. Blood. 2015;126:2676–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Marchesi F, Girardi K, Avvisati G. Pathogenetic, clinical, and prognostic features of adult t(4;11)(q21;q23)/ MLL-AF4 positive B-cell acute lymphoblastic leukemia. Adv Hematol. 2011;2011:1–8.

    Article  Google Scholar 

  13. Bueno C, Montes R, Melen GJ, Ramos-Mejia V, Real PJ, Ayllón V, et al. A human ESC model for MLL-AF4 leukemic fusion gene reveals an impaired early hematopoietic-endothelial specification. Cell Res. 2012;22:986–1002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Andersson AK, Ma J, Wang J, Chen X, Gedman AL, Dang J, et al. The landscape of somatic mutations in infant MLL-rearranged acute lymphoblastic leukemias. Nat Genet. 2015;47:330–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mullighan CG. Molecular genetics of B-precursor acute lymphoblastic leukemia. J Clin Investig. 2012;122:3407–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wong P, Iwasaki M, Somervaille TCP, So CWE, Cleary ML. Meis1 is an essential and rate-limiting regulator of MLL leukemia stem cell potential. Genes Dev. 2007;21:2762–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ghazavi F, Lammens T, van Roy N, Poppe B, Speleman F, Benoit Y, et al. Molecular basis and clinical significance of genetic aberrations in B-cell precursor acute lymphoblastic leukemia. Exp Hematol. 2015;43:640–53.

    Article  CAS  PubMed  Google Scholar 

  18. Chen C-W, Armstrong SA. Targeting DOT1L and HOX gene expression in MLL-rearranged leukemia and beyond. Exp Hematol. 2015;43:673–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stumpel DJPM, Schneider P, Seslija L, Osaki H, Williams O, Pieters R, et al. Connectivity map** identifies HDAC inhibitors for the treatment of t(4;11)-positive infant acute lymphoblastic leukemia. Leukemia. 2012;26:682–92.

    Article  CAS  PubMed  Google Scholar 

  20. Atadja P. Development of the pan-DAC inhibitor panobinostat (LBH589): successes and challenges. Cancer Lett. 2009;280:233–41.

    Article  CAS  PubMed  Google Scholar 

  21. Laubach JP, Moreau P, San-Miguel JF, Richardson PG. Panobinostat for the treatment of multiple myeloma. Clin Cancer Res. 2015;21:4767–73.

    Article  CAS  PubMed  Google Scholar 

  22. Garrido Castro P, van Roon EHJ, Pinhanços SS, Trentin L, Schneider P, Kerstjens M, et al. The HDAC inhibitor panobinostat (LBH589) exerts in vivo anti-leukaemic activity against MLL-rearranged acute lymphoblastic leukaemia and involves the RNF20/RNF40/WAC-H2B ubiquitination axis. Leukemia. 2018;32:323–31.

    Article  CAS  PubMed  Google Scholar 

  23. DeAngelo DJ, Spencer A, Bhalla KN, Prince HM, Fischer T, Kindler T, et al. Phase Ia/II, two-arm, open-label, dose-escalation study of oral panobinostat administered via two dosing schedules in patients with advanced hematologic malignancies. Leukemia. 2013;27:1628–36.

    Article  CAS  PubMed  Google Scholar 

  24. Ottmann OG, Spencer A, Prince HM, Bhalla KN, Fischer T, Liu A, et al. Phase IA/II study of oral panobinostat (LBH589), a novel pan- deacetylase inhibitor (DACi) demonstrating efficacy in patients with advanced hematologic malignancies. Blood. 2008;112:958–958.

    Article  Google Scholar 

  25. Goldberg J, Sulis ML, Bender J, Jeha S, Gardner R, Pollard J, et al. A phase I study of panobinostat in children with relapsed and refractory hematologic malignancies. Pediatr Hematol Oncol. 2020;37:465–74.

    Article  CAS  PubMed  Google Scholar 

  26. Jiang C, Qian M, Gocho Y, Yang W, Du G, Shen S, et al. Genome-wide CRISPR/Cas9 screening identifies determinant of panobinostat sensitivity in acute lymphoblastic leukemia. Blood Adv. 2022;6:2496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Findley HJ, Cooper M, Kim T, Alvarado C, Ragab A. Two new acute lymphoblastic leukemia cell lines with early B-cell phenotypes. Blood. 1982;60:1305–9.

    Article  PubMed  Google Scholar 

  28. Chou TC. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev. 2006;58:621–81.

    Article  CAS  PubMed  Google Scholar 

  29. Chou TC. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 2010;70:440–6.

    Article  CAS  PubMed  Google Scholar 

  30. Agliano A, Martin-Padura I, Mancuso P, Marighetti P, Rabascio C, Pruneri G, et al. Human acute leukemia cells injected in NOD/LtSz-scid/IL-2Rgamma null mice generate a faster and more efficient disease compared to other NOD/scid-related strains. Int J Cancer. 2008;123:2222–7.

    Article  CAS  PubMed  Google Scholar 

  31. Vilas-Zornoza A, Agirre X, Abizanda G, Moreno C, Segura V, de Martino RA, et al. Preclinical activity of LBH589 alone or in combination with chemotherapy in a xenogeneic mouse model of human acute lymphoblastic leukemia. Leukemia. 2012;26:1517–26.

    Article  CAS  PubMed  Google Scholar 

  32. Giles F, Fischer T, Cortes J, Garcia-Manero G, Beck J, Ravandi F, et al. A phase I study of intravenous LBH589, a novel cinnamic hydroxamic acid analogue histone deacetylase inhibitor, in patients with refractory hematologic malignancies. Clin Cancer Res. 2006;12:4628–35.

    Article  CAS  PubMed  Google Scholar 

  33. Li X, Zhang J, **e Y, Jiang Y, Yingjie Z, Xu W. Progress of HDAC inhibitor panobinostat in the treatment of cancer. Curr Drug Targets. 2014;15:622–34.

    Article  CAS  PubMed  Google Scholar 

  34. Schmiegelow K, Nielsen SN, Frandsen TL, Nersting J. Mercaptopurine/methotrexate maintenance therapy of childhood acute lymphoblastic leukemia. J Pediatr Hematol Oncol. 2014;36:503–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yang P-M, Lin J-H, Huang W-Y, Lin Y-C, Yeh S-H, Chen C-C. Inhibition of histone deacetylase activity is a novel function of the antifolate drug methotrexate. Biochem Biophys Res Commun. 2010;391:1396–9.

    Article  CAS  PubMed  Google Scholar 

  36. Berdeja JG, Gregory TK, Faber EA, Hart LL, Mace JR, Arrowsmith ER, et al. A phase I/ <scp>II</scp> study of the combination of panobinostat and carfilzomib in patients with relapsed or relapsed/refractory multiple myeloma: final analysis of second dose-expansion cohort. Am J Hematol. 2021;96:428–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Orlovsky K, Kalinkovich A, Rozovskaia T, Shezen E, Itkin T, Alder H, et al. Down-regulation of homeobox genes MEIS1 and HOXA in MLL -rearranged acute leukemia impairs engraftment and reduces proliferation. Proc Natl Acad Sci. 2011;108:7956–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. de Braekeleer E, Douet-Guilbert N, le Bris M-J, Basinko A, Morel F, de Braekeleer M. Gene expression profiling of adult t(4;11)(q21;q23)-associated acute lymphoblastic leukemia reveals a different signature from pediatric cases. Anticancer Res. 2012;32:3893–9.

    PubMed  Google Scholar 

  39. Bueno C, Montes R, Catalina P, Rodríguez R, Menendez P. Insights into the cellular origin and etiology of the infant pro-B acute lymphoblastic leukemia with MLL-AF4 rearrangement. Leukemia. 2011;25:400–10.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Priscila Santos Scheucher, Hemocentro, Medical School of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil, Ribeirão Preto, Brazil, for assistance in flow cytometry, Rosane Gomes de Paula Queiroz and Veridiana Kiill Suazo, Medical School of Ribeirão Preto, for technical support and Dr. Davi Casele Aragon, statistic of Pediatric Department of Medical School of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil.

Funding

Conselho Nacional de Pesquisa (CNPq) and Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP), process number 2012/18383-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Antunes Moreno.

Ethics declarations

Conflict of interest

No conflicts of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 kb)

Supplementary file2 (DOCX 13 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreno, D.A., Junior, H.L.R., Laranjeira, A.B.A. et al. Panobinostat (LBH589) increase survival in adult xenografic model of acute lymphoblastic leukemia with t(4;11) but promotes antagonistic effects in combination with MTX and 6MP. Med Oncol 39, 216 (2022). https://doi.org/10.1007/s12032-022-01813-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-022-01813-w

Keywords

Navigation