Log in

The photoprotective effects of 2-benzoyl-3-phenylquinoxaline 1,4-dioxide against UVB-induced damage in HaCaT cells

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

With the increasing levels of atmospheric ozone depletion, there has been much concern about the causal effects of high levels of ultraviolet radiation reaching the Earth’s surface on skin cancer. This has led to growing interest in identifying new active ingredients for use in commercial sunscreens. In our study, the chemical compound 2-benzoyl-3-phenylquinoxaline 1,4-dioxide (BPQ) prepared by the Beirut reaction was tested for its ability to protect a human keratinocyte cell line (HaCaT) against ultraviolet B radiation (280–315 nm). We show that BPQ exhibited strong absorbance in the UVB range, with an overall absorption spectrum very similar to that of Padimate-O, a well-known active ingredient used in commercial sunscreens. HaCaT cells, which were irradiated with UVB in the presence of multiple doses of BPQ, exhibited, in a dose-dependent fashion, a significantly higher viability and lower oxidative stress levels than cells irradiated in the absence of drug. Our results show that BPQ is a potential photoprotective drug that holds great promise for use as an active ingredient in commercial sunscreens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Narayanan DL, Saladi RN, Fox JL. Ultraviolet radiation and skin cancer. Int J Dermatol. 2010;49:978.

    Article  PubMed  Google Scholar 

  2. Besaratinia A, Synold TW, Chen H, Chang C, Riggs AD, Pfeifer GP, Cleaver JE. DNA lesions induced by UV A1 and B radiation in human cells: comparative analyses in the overall genome and in the p53 tumor suppressor gene. Proc Natl Acad Sci USA. 2005;102:10058–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pfeifer GP, You YH, Besaratinia A. Mutations induced by ultraviolet light. Mutat Res. 2005;571:19–31.

    Article  CAS  PubMed  Google Scholar 

  4. Ehrhart JC, Gosselet FP, Culerrier RM, Sarasin A. UVB-induced mutations in human key gatekeeper genes governing signalling pathways and consequences for skin tumorigenesis. Photochem Photobiol Sci. 2003;2:825–34.

    Article  CAS  PubMed  Google Scholar 

  5. Manney GL, Santee ML, Rex M, Livesey NJ, Pitts MC, Veekfind P, Nash ER, Wohltmann I, Lehmann R, Froidevaux L, Poole LR, Schoeberl MR, Haffner DP, Davies J, Dorokhov V, Gernandt H, Johnson B, Kivi R, Kyrö E, Larsen N, Levelt PF, Makshtas A, McElroy CT, Nakajima H, Parrondo MC, Tarasick DW, Gathen P, Walker KA, Zinoviev NS. Unprecedented Arctic ozone loss in 2011. Nature. 2011;478:469.

    Article  CAS  PubMed  Google Scholar 

  6. Garcia RR. Atmospheric science: an Arctic ozone hole? Nature. 2011;478:462.

    Article  CAS  PubMed  Google Scholar 

  7. Peak MJ, Peak JG, Moehring MP, Webb RB. Ultraviolet action spectra for DNA dimer induction, lethality, and mutagenesis in Escherichia coli with emphasis on the UVB region. Photochem Photobiol. 1984;40:613–20.

    Article  CAS  PubMed  Google Scholar 

  8. Kielbassa C, Roza L, Epe B. Wavelength dependence of oxidative DNA damage induced by UV and visible light. Carcinogenesis. 1997;18:811–6.

    Article  CAS  PubMed  Google Scholar 

  9. Ziegler A, Remington L, Brash DE, Kimmelman J, Sharma HW, Jonason AS, Simon JA, Jacks T, Leffellt DJ. Sunburn and p53 in the onset of skin cancer. Nature. 1994;372:773–6.

    Article  CAS  PubMed  Google Scholar 

  10. Vitale N, Kisslinger A, Paladino S, Procaccini C, Matarese G, Pierantoni GM, Mancini FP, Tramontano D. Resveratrol couples apoptosis with autophagy in UVB-irradiated HaCaT cells. PloS ONE. 2013. doi:10.1371/journal.pone.0080728.

    Google Scholar 

  11. Kulms D, Schwarz T. Molecular mechanisms of UV-induced apoptosis. Photodermatol Photoimmunol Photomed. 2000;16:195–201.

    Article  CAS  PubMed  Google Scholar 

  12. Ryser S, Schuppli M, Gauthier B, Hernandez DR, Roye O, Hohl D, Moodycliffe AM. UVB-induced skin inflammation and cutaneous tissue injury is dependent on the MHC class I-like protein, CD1d. J Invest Dermatol. 2014;134:192–202.

    Article  CAS  PubMed  Google Scholar 

  13. Cheng G, Li B, Wang C, Zhang H, Liang G, Weng Z, Hao H, Wang X, Liu Z, Dai M, Wang Y, Yuan Z. Systematic and molecular basis of the antibacterial action of quinoxaline 1,4-di-N-oxides against Escherichia coli. PLoS ONE. 2015. doi:10.1371/journal.pone.0136450.

    Google Scholar 

  14. Hennessey TD, Edwards JR. Antibacterial properties of quindoxin: a new growth-promoting agent. Vet Rec. 1972;90:187–91.

    Article  CAS  PubMed  Google Scholar 

  15. Carta A, Corona P, Loriga M. Quinoxaline 1, 4-dioxide: a versatile scaffold endowed with manifold activities. Curr Med Chem. 2005;12:2259–72.

    Article  CAS  PubMed  Google Scholar 

  16. Diab-Assaf M, Haddadin MJ, Yared P, Assaad C, Gali-Muhtasib HU. Quinoxaline 1,4-dioxides: hypoxia selective therapeutic agents. Mol carcinogen. 2002;33:198–205.

    Article  Google Scholar 

  17. Gali-Muhtasib H, Sidani M, Geara F, Mona AD, Al-Hmaira J, Haddadin MJ, Zaatari G. Quinoxaline 1,4-dioxides are novel angiogenesis inhibitors that potentiate antitumor effects of ionizing radiation. Int J Oncol. 2004;24:1121.

    CAS  PubMed  Google Scholar 

  18. Ghattass K, El-Sitt S, Zibara K, Rayes S, Haddadin MJ, El-Sabban M, Gali-Muhtasib H. The quinoxaline di-N-oxide DCQ blocks breast cancer metastasis in vitro and in vivo by targeting the hypoxia inducible factor-1 pathway. Mol Cancer. 2014;13:1–12.

    Article  Google Scholar 

  19. Haddadin MJ, Issidorides CH. Photolysis of a quinoxaline-di-N-oxide. Tetrahedron Lett. 1967;8:753–6.

    Article  Google Scholar 

  20. Gali-Muhtasib HU, Haddadin MJ, Nazer MZ, Sodir NM, Maalouf SW. Photoprotective effects of some quinoxaline 1,4-dioxides in hairless mice. Med Oncol. 1998;15:262–9.

    Article  CAS  PubMed  Google Scholar 

  21. Haddadin MJ, Issidorides CH. The beirut reaction. Heterocycles. 1993;35:1503.

    Article  CAS  Google Scholar 

  22. Vostálová J, Zdařilová A, Svobodová A. Prunella vulgaris extract and rosmarinic acid prevent UVB-induced DNA damage and oxidative stress in HaCaT keratinocytes. Arch Dermatol Res. 2010;302:171–81.

    Article  PubMed  Google Scholar 

  23. Velasco MV, Sarruf FD, Salgado-Santos IM, Haroutiounian-Filho CA, Kaneko TM, Baby AR. Broad-spectrum bioactive sunscreens. Int J Pharm. 2008;363:50–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by undergraduate research experience (URE) grant award from the Faculty of Arts and Sciences, American University of Beirut. We are grateful to the members of the Kamal Shair Central Science Research Laboratory for their technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hala Gali-Muhtasib.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mouawad, J., Saadeh, F., Tabosh, H.A. et al. The photoprotective effects of 2-benzoyl-3-phenylquinoxaline 1,4-dioxide against UVB-induced damage in HaCaT cells. Med Oncol 33, 86 (2016). https://doi.org/10.1007/s12032-016-0802-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-016-0802-4

Keywords

Navigation