Log in

Protective Role of Astrocytic Leptin Signaling Against Excitotoxicity

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Both proconvulsive and anticonvulsive roles of leptin have been reported, suggesting cell-specific actions of leptin in different models of seizure and epilepsy. The goal of our study was to determine the regulation and function of astrocytic leptin receptors in a mouse model of epilepsy and glutamate-induced cytotoxicity. We show that in pilocarpine-challenged mice develo** epilepsy with recurrent seizures after a latent period of 2 weeks, hippocampal leptin receptor (ObR) immunofluorescence was increased at 6 weeks. This was more pronounced in astrocytes than in neurons. In cultured astrocytes, glutamate increased ObRa and ObRb expression, whereas leptin pretreatment attenuated glial cytotoxicity by excess glutamate, reflected by better preserved adenosine triphosphate production. The protective role of astrocytic leptin signaling is further supported by the higher lethality of the astrocyte-specific leptin receptor knockout mice in the initial phase of seizure production. Thus, leptin signaling in astrocytes plays a protective role against seizure, and the effects are at least partially mediated by attenuation of glutamate toxicity. Astrocytic leptin signaling, therefore, may be a novel therapeutic target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Araque A, Navarrete M (2010) Glial cells in neuronal network function. Philos Trans R Soc Lond B Biol Sci 365:2375–2381

    Article  PubMed  Google Scholar 

  • Banks WA, Kastin AJ, Huang W, Jaspan JB, Maness LM (1996) Leptin enters the brain by a saturable system independent of insulin. Peptides 17:305–311

    Article  PubMed  CAS  Google Scholar 

  • Bjørbæk C, Uotani S, da Silva B, Flier JS (1997) Divergent signaling capacities of the long and short isoforms of the leptin receptor. J Biol Chem 272:32686–32695

    Article  PubMed  Google Scholar 

  • Bouret SG, Draper SJ, Simerly RB (2004) Trophic action of leptin on hypothalamic neurons that regulate feeding. Science 304:108–110

    Article  PubMed  CAS  Google Scholar 

  • Bridges RJ, Hatalski CG, Shim SN, Cummings BJ, Vijayan V, Kundi A, Cotman CW (1992) Gliotoxic actions of excitatory amino acids. Neuropharmacology 31:899–907

    Article  PubMed  CAS  Google Scholar 

  • Chan PH, Chu L, Chen S (1990) Effects of MK-801 on glutamate-induced swelling of astrocytes in primary cell culture. J Neurosci Res 25:87–93

    Article  PubMed  CAS  Google Scholar 

  • Chen CJ, Liao SL, Kuo JS (2000) Gliotoxic action of glutamate on cultured astrocytes. J Neurochem 75:1557–1565

    Article  PubMed  CAS  Google Scholar 

  • Guo Z, Jiang H, Xu X, Duan W, Mattson MP (2008) Leptin-mediated cell survival signaling in hippocampal neurons mediated by JAK STAT3 and mitochondrial stabilization. J Biol Chem 283:1754–1763

    Article  PubMed  CAS  Google Scholar 

  • Halassa MM, Fellin T, Haydon PG (2009) Tripartite synapses: roles for astrocytic purines in the control of synaptic physiology and behavior. Neuropharmacology 57:343–346

    Article  PubMed  CAS  Google Scholar 

  • Han BC, Koh SB, Lee EY, Seong YH (2004) Regional difference of glutamate-induced swelling in cultured rat brain astrocytes. Life Sci 76:573–583

    Article  PubMed  CAS  Google Scholar 

  • Haydon PG, Carmignoto G (2006) Astrocyte control of synaptic transmission and neurovascular coupling. Physiol Rev 86:1009–1031

    Article  PubMed  CAS  Google Scholar 

  • He Y, Kastin AJ, Hsuchou H, Pan W (2009) The Cdk5/p35 kinases modulate leptin-induced STAT3 signaling. J Mol Neurosci 39:49–58

    Article  PubMed  CAS  Google Scholar 

  • Hsuchou H, He Y, Kastin AJ, Tu H, Markadakis EN, Rogers RC, Fossier PB, Pan W (2009a) Obesity induces functional astrocytic leptin receptors in hypothalamus. Brain 132:889–902

    Article  PubMed  Google Scholar 

  • Hsuchou H, Kastin AJ, Tu H, Markadakis EN, Stone KP, Wang Y, Heymsfield SB, Chua SC Jr, Obici S, Magrisso IJ, Pan W (2011) Effects of cell type-specific leptin receptor mutation on leptin transport across the BBB. Peptides 32:1392–1399

    Article  PubMed  CAS  Google Scholar 

  • Hsuchou H, Pan W, Barnes MJ, Kastin AJ (2009b) Leptin receptor mRNA in rat brain astrocytes. Peptides 30:2275–2280

    Article  PubMed  CAS  Google Scholar 

  • Jankowsky JL, Patterson PH (2001) The role of cytokines and growth factors in seizures and their sequelae. Prog Neurobiol 63:125–149

    Article  PubMed  CAS  Google Scholar 

  • Lee YB, Du S, Rhim H, Lee EB, Markelonis GJ, Oh TH (2000) Rapid increase in immunoreactivity to GFAP in astrocytes in vitro induced by acidic pH is mediated by calcium influx and calpain I. Brain Res 864:220–229

    Article  PubMed  CAS  Google Scholar 

  • Lynch JJ III, Shek EW, Castagne V, Mittelstadt SW (2010) The proconvulsant effects of leptin on glutamate receptor-mediated seizures in mice. Brain Res Bull 82:99–103

    Article  PubMed  CAS  Google Scholar 

  • Maresh GA, Maness LM, Zadina JE, Kastin AJ (2001) In vitro demonstration of a saturable transport system for leptin across the blood–brain barrier. Life Sci 69:67–73

    Article  PubMed  CAS  Google Scholar 

  • Morash B, Johnstone J, Leopold C, Li A, Murphy P, Ur E, Wilkinson M (2000) The regulation of leptin gene expression in the C6 glioblastoma cell line. Mol Cell Endocrinol 165:97–105

    Article  PubMed  CAS  Google Scholar 

  • Nedergaard M, Ransom B, Goldman SA (2003) New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci 26:523–530

    Article  PubMed  CAS  Google Scholar 

  • Obeid M, Frank J, Medina M, Finckbone V, Bliss R, Bista B, Majmudar S, Hurst D, Strahlendorf H, Strahlendorf J (2010) Neuroprotective effects of leptin following kainic acid-induced status epilepticus. Epilepsy Behav 19:278–283

    Article  PubMed  Google Scholar 

  • Pan W, Hsuchou H, He Y, Sakharkar A, Cain C, Yu C, Kastin AJ (2008) Astrocyte leptin receptor (ObR) and leptin transport in adult-onset obese mice. Endocrinology 149:2798–2806

    Article  PubMed  CAS  Google Scholar 

  • Pan W, Hsuchou H, Jayaram B, Khan RS, Huang EYK, Wu X, Chen C, Kastin AJ (2012) Leptin action on non-neuronal cells in the CNS: potential clinical implications. Ann N Y Acad Sci 1264:64–71

    Google Scholar 

  • Pan W, Hsuchou H, Wu X, Bouret SG, Kastin AJ (2011) Astrocytes modulate distribution and neuronal signaling of leptin in the hypothalamus of obese Avy mice. J Mol Neurosci 43:478–484

    Article  PubMed  CAS  Google Scholar 

  • Pfrieger FW, Barres BA (1996) New views on synapse–glia interactions. Curr Opin Neurobiol 6:615–621

    Article  PubMed  CAS  Google Scholar 

  • Racine RJ, Gartner JG, Burnham WM (1972) Epileptiform activity and neural plasticity in limbic structures. Brain Res 47:262–268

    Article  PubMed  CAS  Google Scholar 

  • Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, ** L, Kuncl RW, Kanai Y, Hediger MA, Wang Y, Schielke JP, Welty DF (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16:675–686

    Article  PubMed  CAS  Google Scholar 

  • Schell MJ, Molliver ME, Snyder SH (1995) d-serine, an endogenous synaptic modulator: localization to astrocytes and glutamate-stimulated release. Proc Natl Acad Sci U S A 92:3948–3952

    Article  PubMed  CAS  Google Scholar 

  • Schneider GH, Baethmann A, Kempski O (1992) Mechanisms of glial swelling induced by glutamate. Can J Physiol Pharmacol 70(Suppl):S334–S343

    Article  PubMed  CAS  Google Scholar 

  • Shanley LJ, O’Malley D, Irving AJ, Ashford ML, Harvey J (2002) Leptin inhibits epileptiform-like activity in rat hippocampal neurones via PI 3-kinase-driven activation of BK channels. J Physiol 545:933–944

    Article  PubMed  CAS  Google Scholar 

  • Shioda S, Funahashi H, Nakajo S, Yada T, Maruta O, Nakai Y (1998) Immunohistochemical localization of leptin receptor in the rat brain. Neurosci Lett 243:41–44

    Article  PubMed  CAS  Google Scholar 

  • Tashiro A, Goldberg J, Yuste R (2002) Calcium oscillations in neocortical astrocytes under epileptiform conditions. J Neurobiol 50:45–55

    Article  PubMed  CAS  Google Scholar 

  • Tu H, Hsuchou H, Kastin AJ, Wu X, Pan W (2010) Unique leptin trafficking by a tailless receptor. FASEB J 24:2281–2291

    Article  PubMed  CAS  Google Scholar 

  • Tu H, Pan W, Feucht L, Kastin AJ (2007) Convergent trafficking pattern of leptin after endocytosis mediated by ObRa–ObRd. J Cell Physiol 212:215–222

    Article  PubMed  CAS  Google Scholar 

  • Turski WA, Cavalheiro EA, Schwarz M, Czuczwar SJ, Kleinrok Z, Turski L (1983) Limbic seizures produced by pilocarpine in rats: behavioural, electroencephalographic and neuropathological study. Behav Brain Res 9:315–335

    Article  PubMed  CAS  Google Scholar 

  • Turski L, Ikonomidou C, Turski WA, Bortolotto ZA, Cavalheiro EA (1989) Review: cholinergic mechanisms and epileptogenesis. The seizures induced by pilocarpine: a novel experimental model of intractable epilepsy. Synapse 3:154–171

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Hsuchou H, Kastin AJ, Mishra PK, Pan W (2012) Upregulation of astrocytic leptin receptor in mice with experimental autoimmune encephalomyelitis. J Mol Neurosci, Epub PMID, 22684620

    Google Scholar 

  • Xu L, Rensing N, Yang XF, Zhang HX, Thio LL, Rothman SM, Weisenfeld AE, Wong M, Yamada KA (2008) Leptin inhibits 4-aminopyridine- and pentylenetetrazole-induced seizures and AMPAR-mediated synaptic transmission in rodents. J Clin Invest 118:272–280

    Article  PubMed  CAS  Google Scholar 

  • Yu C, Kastin AJ, Ding Y, Pan W (2007) Gamma glutamyl transpeptidase is a dynamic indicator of endothelial response to stroke. Exp Neurol 203:116–122

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Funding support was provided by NIH (DK54880 and DK92245 to AJK and NS62291 to WP). The ObR-floxed mice used to generate ALKO mice originated from Dr. Streamson Chua, Jr. (Department of Pediatrics, Albert Einstein Medical College, New York, NY, USA). The ObRa and ObRb plasmids were kindly provided by Dr. Christian Bjorbaek (Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA). We thank Dr. Damir Janigro and Dr. Kirsten Stone for the helpful discussions, Dr. Barry Robert for the assistance in initiating seizure recording and video monitoring, and Ms. Yu** Wang for the technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihong Pan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jayaram, B., Khan, R.S., Kastin, A.J. et al. Protective Role of Astrocytic Leptin Signaling Against Excitotoxicity. J Mol Neurosci 49, 523–530 (2013). https://doi.org/10.1007/s12031-012-9924-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-012-9924-0

Keywords

Navigation