Log in

Salivary microbiomes: a potent evidence in forensic investigations

  • Review
  • Published:
Forensic Science, Medicine and Pathology Aims and scope Submit manuscript

Abstract

Saliva components combine with oral cavity microorganisms, blood cells, and airway secretions after entering the oral cavity via salivary ducts; these factors provide relevant information about persons’ health state, quality of life, and lifestyle, in addition to their age and gender due to which salivary microbiome has emerged as a subject of significant interest in the forensic domain. This study aims to provide an extensive review of the possible applications of the salivary microbiome in characterizing the habit-specific microbiomes. Thirty-three relevant articles were selected for inclusion in this study. The study highlighted the influence of habits on the salivary microbiome suggesting smokers have distinct bacteria like Synergistetes, Streptococcus, Prevotella, and Veillonella in relation to age; people of higher age have more Prevotella; further, dental plaque can be corelated with Streptococci and Actinomycetes. Likewise, dietary habits, alcoholism, and consumption of coffee also affect bacteria types in oral cavities. The study underscores the added benefits of salivary microbiome profiling in forensics, as it is evident that microbial DNA profiling holds substantial promise for enhancing forensic investigations; it enables the characterization of an individual’s habits, such as smoking, alcohol consumption, and dietary preferences; bacteria specific to these habits can be identified, thereby hel** to narrow down the pool of potential suspects. In conclusion, the salivary microbiome presents a valuable avenue for forensic science, offering a novel approach which not only enhances the prospects of solving complex cases but also underscores the rich potential of microbiome analysis in the realm of forensic investigation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets analyzed during the current study are not publicly available due to data privacy, but it can be available on reasonable request.

References

  1. Leake SL. Is human DNA enough? – Potential for bacterial DNA. Front Genet. 2013;4:282.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Rajshekar M, Tennant M, Thejaswini B. Salivary biomarkers and their applicability in forensic identification. Sri Lanka J Forensic Med Sci Law. 2013;4:10–5.

    Article  Google Scholar 

  3. Fuentes AM, Sanchez CN. Biomarkers in saliva as a tool for health diagnosis. New trends in biomarkers and diseases research: an overview. 1st ed. UAE: Bentham Science Publishers. 2017;436–68.

  4. Leake SL, Pagni M, Falquet L, Taroni F, Greub G. The salivary microbiome for differentiating individuals: proof of principle. Microbes Infect. 2016;18:399–405.

    Article  CAS  PubMed  Google Scholar 

  5. Takayasu L, Suda W, Takanashi K, Iioka E, Kurokawa R, Shindo C, et al. Circadian oscillations of microbial and functional composition in the human salivary microbiome. DNA Res. 2017;24:261–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Song SJ, Lauber C, Costello EK, Lozupone CA, Humphrey G, Berg-Lyons D, et al. Cohabiting family members share microbiota with one another and with their dogs. Elife. 2013;2:e00458.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Alan G, Sarah JP. Microbes as forensic indicators. Trop Biomed. 2012;29:311–30.

    CAS  PubMed  Google Scholar 

  8. Lamont RJ, Jenkinson HF. Oral microbiology at a glance. Oxford, UK: Wiley-Blackwell; 2010.

    Google Scholar 

  9. Murugesan S, Al Ahmad SF, Singh P, Saadaoui M, Kumar M, Al Khodor S. Profiling the salivary microbiome of the Qatari population. J Transl Med. 2020;18(1):127. https://doi.org/10.1186/s12967-020-02291-2. PMID: 32169076; PMCID: PMC7071716, pp. 2-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Karabudak S, Ari O, Durmaz B, Dal T, Basyigit T, Kalcioglu MT, Durmaz R. Analysis of the effect of smoking on the buccal microbiome using next-generation sequencing technology. J Med Microbiol. 2019;68(8):1148–58. https://doi.org/10.1099/jmm.0.001003. Epub 2019 Jun 14. PMID: 31199220, pg. 1148–1149.

    Article  CAS  PubMed  Google Scholar 

  11. Belstrøm D, Holmstrup P, Fiehn NE, Kirkby N, Kokaras A, Paster BJ, Bardow A. Salivary microbiota in individuals with different levels of caries experience. J Oral Microbiol. 2017;9(1):1270614. https://doi.org/10.1080/20002297.2016.1270614. PMID: 28326153; PMCID: PMC5328370, pg 1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lazarevic V, Whiteson K, Hernandez D, et al. Study of inter- and intra-individual variations in the salivary microbiota. BMC Genomics. 2010;11:523. https://doi.org/10.1186/1471-2164-11-523, pg 1-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ghannoum MA, Jurevic RJ, Mukherjee PK, Cui F, Sikaroodi M, Naqvi A, Gillevet PM. Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS Pathog. 2010;6(1):e1000713. https://doi.org/10.1371/journal.ppat.1000713. PMID: 20072605; PMCID: PMC2795202, pp. 1-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Contreras M, Costello EK, Hidalgo G, Magris M, Knight R, Dominguez-Bello MG. The bacterial microbiota in the oral mucosa of rural Amerindians. Microbiology (Reading). 2010;156(Pt 11):3282–7. https://doi.org/10.1099/mic.0.043174-0. Epub 2010 Sep 16. PMID: 20847007, pg. 3282–3285.

    Article  CAS  PubMed  Google Scholar 

  15. Quaak FCA, van Duijn T, Hoogenboom J, Kloosterman AD, Kuiper I. Human-associated microbial populations as evidence in forensic casework. Forensic Sci IntGenet. 2018;36:176–85. https://doi.org/10.1016/j.fsigen.2018.06.020. Epub 2018 Jun 30. PMID: 30036744, pg. 2.

    Article  CAS  Google Scholar 

  16. Al-Zyoud W, Hajjo R, Abu-Siniyeh A, Hajjaj S. Salivary microbiome and cigarette smoking: a first of its kind investigation in Jordan. Int J Environ Res Public Health. 2019;17(1):256. https://doi.org/10.3390/ijerph17010256. PMID: 31905907; PMCID: PMC6982339, pp. 1-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lim Y, Totsika M, Morrison M, Punyadeera C. The saliva microbiome profiles are minimally affected by collection method or DNA extraction protocols. Scientific Reports. 2017;7. https://doi.org/10.1038/s41598-017-07885-3, pg 2.

  18. Morris A, Beck JM, Schloss PD, Campbell TB, Crothers K, Curtis JL, Flores SC, Fontenot AP, Ghedin E, Huang L, Jablonski K, Kleerup E, Lynch SV, Sodergren E, Twigg H, Young VB, Bassis CM, Venkataraman A, Schmidt TM, Weinstock GM, Lung HIV Microbiome Project. Comparison of the respiratory microbiome in healthy nonsmokers and smokers. Am J Respir Crit Care Med. 2013;187(10):1067–75. https://doi.org/10.1164/rccm.201210-1913OC. PMID: 23491408; PMCID: PMC3734620, pg 1067.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Karasneh JA, Al Habashneh RA, Marzouka NA, Thornhill MH. Effect of cigarette smoking on subgingival bacteria in healthy subjects and patients with chronic periodontitis. BMC Oral Health. 2017;17(1):64. https://doi.org/10.1186/s12903-017-0359-4. PMID: 28327165; PMCID: PMC5361727, pg 1-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vogtmann E, Flores R, Yu G, Freedman ND, Shi J, Gail MH, Dye BA, Wang GQ, Klepac-Ceraj V, Paster BJ, Wei WQ, Guo HQ, Dawsey SM, Qiao YL, Abnet CC. Association between tobacco use and the upper gastrointestinal microbiome among Chinese men. Cancer Causes Control. 2015;26(4):581–8. https://doi.org/10.1007/s10552-015-0535-2. Epub 2015 Feb 21. PMID: 25701246; PMCID: PMC4852095.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hansen TH, Kern T, Bak EG, Kashani A, Allin KH, Nielsen T, Hansen T, Pedersen O. Impact of a vegan diet on the human salivary microbiota. Sci Rep. 2018;8(1):5847. https://doi.org/10.1038/s41598-018-24207-3. PMID: 29643500; PMCID: PMC5895596, pg 1–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Goodson JM, Groppo D, Halem S, Carpino E. Is obesity an oral bacterial disease? J Dent Res. 2009;88(6):519–23. https://doi.org/10.1177/0022034509338353. PMID: 19587155; PMCID: PMC2744897, pp. 519-520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Piombino P, Genovese A, Esposito S, Moio L, Cutolo PP, Chambery A, Severino V, Moneta E, Smith DP, Owens SM, Gilbert JA, Ercolini D. Saliva from obese individuals suppresses the release of aroma compounds from wine. PLoS ONE. 2014;9(1):e85611. https://doi.org/10.1371/journal.pone.0085611. PMID: 24465618; PMCID: PMC3899019, pp. 1-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhou Y, Gao H, Mihindukulasuriya KA, La Rosa PS, Wylie KM, Vishnivetskaya T, Podar M, Warner B, Tarr PI, Nelson DE, Fortenberry JD, Holland MJ, Burr SE, Shannon WD, Sodergren E, Weinstock GM. Biogeography of the ecosystems of the healthy human body. Genome Biol. 2013;14(1):R1. https://doi.org/10.1186/gb-2013-14-1-r1. PMID: 23316946; PMCID: PMC4054670, pg.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Segata N, Haake SK, Mannon P, et al. Composition of the adult digestive tract bacterial microbiome based on seven mouth surfaces, tonsils, throat and stool samples. Genome Biol. 2012;13:R42. https://doi.org/10.1186/gb-2012-13-6-r42, Pg 1-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mager DL, **menez-Fyvie LA, Haffajee AD, Socransky SS. Distribution of selected bacterial species on intraoral surfaces. J Clin Periodontol. 2003;30(7):644–54. https://doi.org/10.1034/j.1600-051x.2003.00376.x. PMID: 12834503, Pg 645.

    Article  PubMed  Google Scholar 

  27. Mason MR, Preshaw PM, Nagaraja HN, Dabdoub SM, Rahman A, Kumar PS. The subgingival microbiome of clinically healthy current and never smokers. ISME J. 2015;9(1):268–72. https://doi.org/10.1038/ismej.2014.114. Epub 2014 Jul 11. PMID: 25012901; PMCID: PMC4274424, pg 270–271.

    Article  PubMed  Google Scholar 

  28. Al-Kawas S, Al-Marzooq F, Rahman B, et al. The impact of smoking different tobacco types on the subgingival microbiome and periodontal health: a pilot study. Sci Rep. 2021;11:1113. https://doi.org/10.1038/s41598-020-80937-3, pp. 1-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Marsh PD, Zaura E. Dental biofilm: ecological interactions in health and disease. J Clin Periodontol. 2017;44:S12–22. https://doi.org/10.1111/jcpe.12679.

    Article  PubMed  Google Scholar 

  30. Hajishengallis G, Lamont RJ. Beyond the red complex and into more complexity: the polymicrobial synergy and dysbiosis (PSD) model of periodontal disease etiology. Mol Oral Microbiol. 2012. https://doi.org/10.1111/j.2041-1014.2012.00663.x.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Marsh PD. Controlling the oral biofilm with antimicrobials. J Dent. 2010;38(supp-S1):0–. https://doi.org/10.1016/s0300-5712(10)70005-1.

    Article  Google Scholar 

  32. Moon JH, Lee JH, Lee JY. Subgingival microbiome in smokers and non-smokers in Korean chronic periodontitis patients. Mol Oral Microbiol. 2015;30(3):227–41. https://doi.org/10.1111/omi.12086. Epub 2014 Nov 19. PMID: 25283067, pg 228–235.

    Article  CAS  PubMed  Google Scholar 

  33. Hampelska K, Jaworska MM, Babalska ZŁ, Karpiński TM. The role of oral microbiota in intra-oral halitosis. J Clin Med. 2020;9(8):2484–. https://doi.org/10.3390/jcm9082484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All persons who meet authorship criteria are listed as authors, and all authors certify that they have participated sufficiently in the work to take public responsibility for the content, including participation in the concept, design, analysis, writing, or revision of the manuscript.

• Category 1

Conception and design of study: SY, VS, and VT.

Acquisition of data: SY, PK, and AS.

Analysis and/or interpretation of data: SY, PK, and AS.

• Category 2

Drafting the manuscript: SY, PK, and AS.

Revising the manuscript critically for important intellectual content: VS and VT.

• Category 3

Approval of the version of the manuscript to be published: SY, PK, AS, VT, and VS.

Corresponding author

Correspondence to Shubham Yadav.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Each author certifies that this material or similar material has not been and will not be submitted to or published in any other publication before its appearance in the Forensic Science, Medicine and Pathology.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, S., Kumari, P., Sinha, A. et al. Salivary microbiomes: a potent evidence in forensic investigations. Forensic Sci Med Pathol (2024). https://doi.org/10.1007/s12024-023-00759-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12024-023-00759-3

Keywords

Navigation