Log in

Genome-Wide Demethylation by 5-aza-2’-Deoxycytidine Alters the Cell Fate of Stem/Progenitor Cells

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

DNA methyltransferase (DNMT) inhibitor 5-aza-2’-deoxycytidine (5-aza-CdR) is able to cause DNA demethylation in the genome and induce the expression of silenced genes. Whether DNA demethylation can affect the gene expression of stem/progenitor cells has not been understood. Mouse utricle epithelia-derived progenitor cells (MUCs), which possess stem cell features as previously described, exhibit a potential DNA methylation status in the genome. In this study, MUCs were treated with 5-aza-CdR to determine whether DNMT inhibitor is able to induce the differentiation of MUCs. With 5-aza-CdR treatment for 72 hr, MUCs expressed epithelial genes including Cdh1, Krt8, Krt18, and Dsp. Further, hair cell genes Myo7a and Myo6 increased their expressions in response to 5-aza-CdR treatment. The decrease in the global methylated DNA values after 5-aza-CdR treatment indicated a significant DNA demethylation in the genome of MUCs, which may contribute to remarkably increased expression of epithelial genes and hair cell genes. The progenitor MUCs then turned into an epithelial-like hair cell fate with the expression of both epithelial and hair cell genes. This study suggests that stem cell differentiation can be stimulated by DNA demethylation, which may open avenues for studying stem cell fate induction using epigenetic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Shi, F., & Edge, A. S. (2013). Prospects for replacement of auditory neurons by stem cells. Hearing Research, 297, 106–112.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Hu, Z., & Ulfendahl, M. (2013). The potential of stem cells for the restoration of auditory function in humans. Regenerative Medicine, 8(3), 309–318.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Groves, A. K., Zhang, K. D., & Fekete, D. M. (2013). The genetics of hair cell development and regeneration. Annual Review of Neuroscience, 36, 361–381.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Ronaghi, M., Nasr, M., & Heller, S. (2012). Concise review: Inner ear stem cells–an oxymoron, but why? Stem Cells, 30(1), 69–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Cotanche, D. A., & Kaiser, C. L. (2010). Hair cell fate decisions in cochlear development and regeneration. Hearing Research, 266(1–2), 18–25.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Okano, T., & Kelley, M. W. (2012). Stem cell therapy for the inner ear: recent advances and future directions. Trends in Amplification, 16(1), 4–18.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Li, H., Liu, H., & Heller, S. (2003). Pluripotent stem cells from the adult mouse inner ear. Nature Medicine, 9(10), 1293–1299.

    Article  CAS  PubMed  Google Scholar 

  8. Oshima, K., Grimm, C. M., Corrales, C. E., et al. (2007). Differential distribution of stem cells in the auditory and vestibular organs of the inner ear. Journal of the Association for Research in Otolaryngology, 8(1), 18–31.

    Article  PubMed Central  PubMed  Google Scholar 

  9. White, P. M., Doetzlhofer, A., Lee, Y. S., Groves, A. K., & Segil, N. (2006). Mammalian cochlear supporting cells can divide and trans-differentiate into hair cells. Nature, 441(7096), 984–987.

    Article  CAS  PubMed  Google Scholar 

  10. Mizutari, K., Fujioka, M., Hosoya, M., et al. (2013). Notch inhibition induces cochlear hair cell regeneration and recovery of hearing after acoustic trauma. Neuron, 77(1), 58–69.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Kelley, M. W., Talreja, D. R., & Corwin, J. T. (1995). Replacement of hair cells after laser microbeam irradiation in cultured organs of corti from embryonic and neonatal mice. The Journal of Neuroscience, 15(4), 3013–3026.

    CAS  PubMed  Google Scholar 

  12. Zhang, L., & Hu, Z. (2012). Sensory epithelial cells acquire features of prosensory cells via epithelial to mesenchymal transition. Stem Cells and Development, 21(10), 1812–1821.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Oesterle, E. C., Campbell, S., Taylor, R. R., Forge, A., & Hume, C. R. (2008). Sox2 and JAGGED1 expression in normal and drug-damaged adult mouse inner ear. Journal of the Association for Research in Otolaryngology, 9(1), 65–89.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Batts, S. A., Shoemaker, C. R., & Raphael, Y. (2009). Notch signaling and Hes labeling in the normal and drug-damaged organ of Corti. Hearing Research, 249(1–2), 15–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Kelley, M. W. (2006). Regulation of cell fate in the sensory epithelia of the inner ear. Nature Reviews Neuroscience, 7(11), 837–849.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, L., & Hu, Z. (2012). Sensory Epithelial Cells Acquire Features of Prosensory Cells Via Epithelial to Mesenchymal Transition. Stem Cells and Development, 21(10), 1812–1821.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Barald, K. F., & Kelley, M. W. (2004). From placode to polarization: new tunes in inner ear development. Development, 131(17), 4119–4130.

    Article  CAS  PubMed  Google Scholar 

  18. Bird, A. (2007). Perceptions of epigenetics. Nature, 447(7143), 396–398.

    Article  CAS  PubMed  Google Scholar 

  19. Jones, P. A., & Takai, D. (2001). The role of DNA methylation in mammalian epigenetics. Science, 293(5532), 1068–1070.

    Article  CAS  PubMed  Google Scholar 

  20. Razin, A., & Cedar, H. (1991). DNA methylation and gene expression. Microbiological Reviews, 55(3), 451–458.

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Bird, A. (2002). DNA methylation patterns and epigenetic memory. Genes and Development, 16(1), 6–21.

    Article  CAS  PubMed  Google Scholar 

  22. Dodge, J. E., Ramsahoye, B. H., Wo, Z. G., Okano, M., & Li, E. (2002). De novo methylation of MMLV provirus in embryonic stem cells: CpG versus non-CpG methylation. Gene, 289(1–2), 41–48.

    Article  CAS  PubMed  Google Scholar 

  23. Ghoshal, K., Datta, J., Majumder, S., et al. (2005). 5-Aza-deoxycytidine induces selective degradation of DNA methyltransferase 1 by a proteasomal pathway that requires the KEN box, bromo-adjacent homology domain, and nuclear localization signal. Molecular and Cellular Biology, 25(11), 4727–4741.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Klose, R. J., & Bird, A. P. (2006). Genomic DNA methylation: the mark and its mediators. Trends in Biochemical Sciences, 31(2), 89–97.

    Article  CAS  PubMed  Google Scholar 

  25. Auclair, G., & Weber, M. (2012). Mechanisms of DNA methylation and demethylation in mammals. Biochimie, 94(11), 2202–2211.

    Article  CAS  PubMed  Google Scholar 

  26. Phillips, T. (2008). The role of methylation in gene expression. Nature Education, 1(1), 116.

    Google Scholar 

  27. Sigalotti, L., Fratta, E., Coral, S., et al. (2007). Epigenetic drugs as pleiotropic agents in cancer treatment: biomolecular aspects and clinical applications. Journal of Cellular Physiology, 212(2), 330–344.

    Article  CAS  PubMed  Google Scholar 

  28. Sigalotti, L., Fratta, E., Coral, S., & Maio, M. (2014). Epigenetic drugs as immunomodulators for combination therapies in solid tumors. Pharmacology and Therapeutics, 142(3), 339–350.

    Article  CAS  PubMed  Google Scholar 

  29. Christman, J. K. (2002). 5-Azacytidine and 5-aza-2’-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene, 21(35), 5483–5495.

    Article  CAS  PubMed  Google Scholar 

  30. Mossman, D., Kim, K. T., & Scott, R. J. (2010). Demethylation by 5-aza-2’-deoxycytidine in colorectal cancer cells targets genomic DNA whilst promoter CpG island methylation persists. BMC Cancer, 10, 366.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Patra, A., Deb, M., Dahiya, R., & Patra, S. K. (2011). 5-Aza-2’-deoxycytidine stress response and apoptosis in prostate cancer. Clinical Epigenetics, 2(2), 339–348.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Corn, P. G., Smith, B. D., Ruckdeschel, E. S., Douglas, D., Baylin, S. B., & Herman, J. G. (2000). E-cadherin expression is silenced by 5’ CpG island methylation in acute leukemia. Clinical Cancer Research, 6(11), 4243–4248.

    CAS  PubMed  Google Scholar 

  33. Ling, Z. Q., Li, P., Ge, M. H., et al. (2011). Hypermethylation-modulated down-regulation of CDH1 expression contributes to the progression of esophageal cancer. International Journal of Molecular Medicine, 27(5), 625–635.

    Article  CAS  PubMed  Google Scholar 

  34. Lin, S. L. (2011). Concise review: Deciphering the mechanism behind induced pluripotent stem cell generation. Stem Cells, 29(11), 1645–1649.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Yan, X., Ehnert, S., Culmes, M., et al. (2014). 5-azacytidine improves the osteogenic differentiation potential of aged human adipose-derived mesenchymal stem cells by DNA demethylation. PloS One, 9(3), e90846.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Liang, G., Gonzales, F. A., Jones, P. A., Orntoft, T. F., & Thykjaer, T. (2002). Analysis of gene induction in human fibroblasts and bladder cancer cells exposed to the methylation inhibitor 5-aza-2’-deoxycytidine. Cancer Research, 62(4), 961–966.

    CAS  PubMed  Google Scholar 

  37. Bennett, L. B., Schnabel, J. L., Kelchen, J. M., et al. (2009). DNA hypermethylation accompanied by transcriptional repression in follicular lymphoma. Genes, Chromosomes & Cancer, 48(9), 828–841.

    Article  CAS  Google Scholar 

  38. Almstedt, M., Blagitko-Dorfs, N., Duque-Afonso, J., et al. (2010). The DNA demethylating agent 5-aza-2’-deoxycytidine induces expression of NY-ESO-1 and other cancer/testis antigens in myeloid leukemia cells. Leukemia Research, 34(7), 899–905.

    Article  CAS  PubMed  Google Scholar 

  39. Bender, C. M., Pao, M. M., & Jones, P. A. (1998). Inhibition of DNA methylation by 5-aza-2’-deoxycytidine suppresses the growth of human tumor cell lines. Cancer Research, 58(1), 95–101.

    CAS  PubMed  Google Scholar 

  40. Mund, C., Hackanson, B., Stresemann, C., Lubbert, M., & Lyko, F. (2005). Characterization of DNA demethylation effects induced by 5-Aza-2’-deoxycytidine in patients with myelodysplastic syndrome. Cancer Research, 65(16), 7086–7090.

    Article  CAS  PubMed  Google Scholar 

  41. De Smet, C., Lurquin, C., Lethe, B., Martelange, V., & Boon, T. (1999). DNA methylation is the primary silencing mechanism for a set of germ line- and tumor-specific genes with a CpG-rich promoter. Molecular and Cellular Biology, 19(11), 7327–7335.

    PubMed Central  PubMed  Google Scholar 

  42. Yamashita, S., Tsu**o, Y., Moriguchi, K., Tatematsu, M., & Ushijima, T. (2006). Chemical genomic screening for methylation-silenced genes in gastric cancer cell lines using 5-aza-2’-deoxycytidine treatment and oligonucleotide microarray. Cancer Science, 97(1), 64–71.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Neelkumar Patel for his technical support and Jue Wang, Fei Nei, and **aoyang Li for valuable comments to the manuscript. The study is supported by NIDCD/NIH (1 R01 DC013275) and the Grants Plus Program from the Wayne State University.

Conflict of Interest

The authors indicate no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengqing Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Hu, Z. Genome-Wide Demethylation by 5-aza-2’-Deoxycytidine Alters the Cell Fate of Stem/Progenitor Cells. Stem Cell Rev and Rep 11, 87–95 (2015). https://doi.org/10.1007/s12015-014-9542-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-014-9542-z

Keywords

Navigation