Log in

Monoclonal Antibodies in Oncology: A Decade of Novel Options

  • Review Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Several decades of research and clinical trials have conclusively provided proof of concept on the usefulness of monoclonal antibodies in the armamentarium against cancer. There are numerous mAbs approved for both, the treatment of solid tumors as well as hematological malignancies. These have ranked in the top ten best-selling drugs in recent years and one such mAb, pembrolizumab, is slated to be the highest revenue-generating drug by 2024. A large proportion of the mAbs in oncology have been approved by regulatory agencies in just the past decade and many professionals working in the field have been unable to keep abreast with the latest mAbs available and their mechanism of action. In this review, we aim to provide a systematic compilation of the various mAbs in oncology, approved by the US FDA in the past decade. It also elaborates on the mechanism of action of the newly approved mAbs to provide an overall update of the same. For this purpose, we have referred to the Drugs at FDA and relevant articles from PubMed from the year 2010 to date.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Scott, A. M., Allison, J. P., & Wolchok, J. D. (2012). Monoclonal antibodies in cancer therapy. Cancer Immunity Arch, 12, 1.

    Google Scholar 

  2. Nejadmoghaddam, M. R., Minai-Tehrani, A., Ghahremanzadeh, R., Mahmoudi, M., Dinarvand, R., & Zarnani, A. H. (2019). Antibody-drug conjugates: possibilities and challenges. Avicenna Journal of Medical Biotechnology, 11(1), 3.

    PubMed  PubMed Central  Google Scholar 

  3. Balkwill, F. R., Capasso, M., & Hagemann, T. (2012). The tumor microenvironment at a glance. Journal of Cell Science, 125(23), 5591–5596. https://doi.org/10.1242/jcs.116392.

    Article  CAS  PubMed  Google Scholar 

  4. Wang, M., Zhao, J., & Zhang, L., et al. (2017). Role of tumor microenvironment in tumorigenesis. Journal of Cancer, 8(5), 761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ostrand-Rosenberg, S., Horn, L. A., & Haile, S. T. (2014). The programmed death-1 immune-suppressive pathway: barrier to antitumor immunity. Journal of Immunology, 193(8), 3835–3841.

    Article  CAS  Google Scholar 

  6. Sasaki, T., Hiroki, K., & Yamashita, Y. (2013). The role of epidermal growth factor receptor in cancer metastasis and microenvironment. BioMed Research International, 2013, 546318. https://doi.org/10.1155/2013/546318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yasuda, H., Park, E., & Yun, C. H., et al. (2013). Structural, biochemical, and clinical characterization of epidermal growth factor receptor (EGFR) exon 20 insertion mutations in lung cancer. Science Translational Medicine, 5(216), 216ra177.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Plotnikov, A., Zehorai, E., Procaccia, S., & Seger, R. (2011). The MAPK cascades: signaling components, nuclear roles, and mechanisms of nuclear translocation. Biochimica et Biophysica Acta BBA-Molecular Cell Research, 1813(9), 1619–1633.

    Article  CAS  PubMed  Google Scholar 

  9. Brand, T. M., Iida, M., & Wheeler, D. L. (2011). Molecular mechanisms of resistance to the EGFR monoclonal antibody cetuximab. Cancer Biology and Therapy, 11(9), 777–792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sunada, H., Magun, B. E., Mendelsohn, J., & MacLeod, C. L. (1986). Monoclonal antibody against epidermal growth factor receptor is internalized without stimulating receptor phosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 83(11), 3825–3829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Saba, N. F., Chen, Z. G., & Haigentz, M., et al. (2019). Targeting the EGFR and immune pathways in squamous cell carcinoma of the head and neck (SCCHN): forging a new alliance. Molecular Cancer Therapeutics, 18(11), 1909–1915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen, S., Li, X., Chen, R., Yin, M., & Zheng, Q. (2016). Cetuximab intensifies the ADCC activity of adoptive NK cells in a nude mouse colorectal cancer xenograft model. Oncology Letters, 12(3), 1868–1876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fala, L. (2016). Portrazza (Necitumumab), an IgG1 Monoclonal Antibody, FDA Approved for Advanced Squamous Non–Small-Cell Lung Cancer. American Health and Drug Benefits, 9(Spec Feature), 119.

    PubMed  PubMed Central  Google Scholar 

  14. Dienstmann, R., & Tabernero, J. (2010). Necitumumab, a fully human IgG1 mAb directed against the EGFR for the potential treatment of cancer. Current Opinion in Investigational Drugs London England 2000, 11(12), 1434–1441.

    CAS  PubMed  Google Scholar 

  15. Iqbal, N., & Iqbal, N. (2014). Human epidermal growth factor receptor 2 (HER2) in cancers: over expression and therapeutic implications. Molecular Biology International, 6, 852748. https://doi.org/10.1155/2014/852748.

    Article  CAS  Google Scholar 

  16. Way TD, Lin JK (2005) Role of HER2/HER3 co-receptor in breast carcinogenesis. Future Oncology 1(6). https://doi.org/10.2217/14796694.1.6.841.

  17. Baselga, J. (2001). Herceptin® alone or in combination with chemotherapy in the treatment of HER2- positive metastatic breast cancer: pivotal trials. Oncology, 61(Suppl. 2), 14–21.

    Article  CAS  PubMed  Google Scholar 

  18. Gajria, D., & Chandarlapaty, S. (2011). HER2-amplified breast cancer: mechanisms of trastuzumab resistance and novel targeted therapies. Expert Review of Anticancer Therapry, 11(2), 263–275.

    Article  CAS  Google Scholar 

  19. Maly, J. J., & Macrae, E. R. (2014). Pertuzumab in Combination with Trastuzumab and Chemotherapy in the Treatment of HER2-Positive Metastatic Breast Cancer: Safety, Efficacy, and Progression Free Survival. Breast Cancer (Auckland), 8, 81–88. https://doi.org/10.4137/BCBCR.S9032.

    Article  CAS  Google Scholar 

  20. Nishida, N., Yano, H., Nishida, T., Kamura, T., & Kojiro, M. (2006). Angiogenesis in cancer. Vascular Health and Risk Management, 2(3), 213–219. https://doi.org/10.2147/vhrm.2006.2.3.213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dela Cruz, C. S., Tanoue, L. T., & Matthay, R. A. (2011). Lung Cancer: Epidemiology, Etiology, and Prevention. Clinics in Chest Medicine, 32(4), 605–644. https://doi.org/10.1016/j.ccm.2011.09.001.

    Article  Google Scholar 

  22. Carbone, D. P., & Felip, E. (2011). Adjuvant Therapy in Non–Small Cell Lung Cancer: Future Treatment Prospects and Paradigms. Clinical Lung Cancer, 12(5), 261–271. https://doi.org/10.1016/j.cllc.2011.06.002.

    Article  CAS  PubMed  Google Scholar 

  23. US FDA (2020) FDA approves ramucirumab plus erlotinib for first-line metastatic NSCLC. https://www.fda.gov/drugs/drug-approvals-and-databases/fda-approves-ramucirumab-plus-erlotinib-first-line-metastatic-nsclc.

  24. Nakagawa, K., Garon, E. B., & Seto, T., et al. (2019). Ramucirumab plus erlotinib in patients with untreated, EGFR-mutated, advanced non-small-cell lung cancer (RELAY): a randomised, double-blind, placebo- controlled, phase 3 trial. Lancet Oncology, 20(12), 1655–1669. https://doi.org/10.1016/S1470-2045(19)30634-5.

    Article  CAS  PubMed  Google Scholar 

  25. Verdaguer, H., Tabernero, J., & Macarulla, T. (2016). Ramucirumab in metastatic colorectal cancer: evidence to date and place in therapy. Therapeutic Advances in Medical Oncology, 8(3), 230–242. https://doi.org/10.1177/1758834016635888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zola, H., Swart, B., & Banham, A., et al. (2017). CD molecules 2006—Human cell differentiation molecules. Journal of Immunological Methods, 319(1-2), 1–5. https://doi.org/10.1016/j.jim.2006.11.001.

    Article  CAS  Google Scholar 

  27. Leandro, M. J. (2013). B-cell subpopulations in humans and their differential susceptibility to depletion with anti-CD20 monoclonal antibodies. Arthritis Research and Therapy, 15(Suppl 1), S3. https://doi.org/10.1186/ar3908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Davis, T. A., Czerwinski, D. K., & Levy, R. (1999). Therapy of B-cell lymphoma with anti-CD20 antibodies can result in the loss of CD20 antigen expression. Clinical Cancer Research: Official Journal of the American Association for Cancer Research, 5(3), 611–615.

    CAS  Google Scholar 

  29. Olejniczak, S. H., Stewart, C. C., Donohue, K., & Czuczman, M. S. (2006). A Quantitative Exploration of Surface Antigen Expression in Common B-Cell Malignancies Using Flow Cytometry. Immunological Investigations, 35(1), 93–114. https://doi.org/10.1080/08820130500496878.

    Article  CAS  PubMed  Google Scholar 

  30. Prevodnik, V. K., Lavrenčak, J., Horvat, M., & Novakovič, B. J. (2011). The predictive significance of CD20 expression in B-cell lymphomas. Diagnostic Pathology, 6(1), 33. https://doi.org/10.1186/1746-1596-6-33.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Boross, P., & Leusen, J. H. W. (2012). Mechanisms of action of CD20 antibodies. American Journal of Cancer Research, 2(6), 676–690.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Tobinai, K., Klein, C., Oya, N., & Fingerle-Rowson, G. (2017). A Review of Obinutuzumab (GA101), a Novel Type II Anti-CD20 Monoclonal Antibody, for the Treatment of Patients with B-Cell Malignancies. Advances in Therapy, 34(2), 324–356. https://doi.org/10.1007/s12325-016-0451-1.

    Article  CAS  PubMed  Google Scholar 

  33. Herbrand, U. (2016). (2016). Antibody-Dependent Cellular Phagocytosis: The Mechanism of Action That Gets No Respect A Discussion About Improving Bioassay Reproducibility. Bioprocessing Journal. 15(1), 26–29. https://doi.org/10.12665/J151. Herbrand.

  34. Golay, J., & Taylor, R. P. (2020). The Role of Complement in the Mechanism of Action of Therapeutic Anti- Cancer mAbs. Antibodies, 9(4), 58. https://doi.org/10.3390/antib9040058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cambridge, G., Leandro, M. J., & Edwards, J. C. W., et al. (2003). Serologic changes following B lymphocyte depletion therapy for rheumatoid arthritis. Arthritis and Rheumatism, 48(8), 2146–2154. https://doi.org/10.1002/art.11181.

    Article  PubMed  Google Scholar 

  36. Teng, Y. O., Wheater, G., & Hogan, V. E., et al. (2012). Induction of long-term B-cell depletion in refractory rheumatoid arthritis patients preferentially affects autoreactive more than protective humoral immunity. Arthritis Research and Therapry, 14(2), R57. https://doi.org/10.1186/ar3770.

    Article  CAS  Google Scholar 

  37. Yurkiewicz, I. R., Muffly, L., & Liedtke, M. (2018). Inotuzumab ozogamicin: a CD22 mAb-drug conjugate for adult relapsed or refractory B-cell precursor acute lymphoblastic leukemia. Drug Design, Development and Therapy, 12, 2293–2300. https://doi.org/10.2147/DDDT.S150317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dabir, S., Kresak, A., Yang, M., Fu, P., Wildey, G., & Dowlati, A. (2015). CD30 Is a Potential Therapeutic Target in Malignant Mesothelioma. Molecular Cancer Therapeutics, 14(3), 740–746. https://doi.org/10.1158/1535-7163.MCT-14-0972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bhatt, S., Ashlock, B. M., & Natkunam, Y., et al. (2013). CD30 targeting with brentuximab vedotin: a novel therapeutic approach to primary effusion lymphoma. Blood, 122(7), 1233–1242. https://doi.org/10.1182/blood-2013-01-481713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Leone, R. D., & Emens, L. A. (2018). Targeting adenosine for cancer immunotherapy. Journal of Immunotherapy of Cancer, 6(1), 57. https://doi.org/10.1186/s40425-018-0360-8.

    Article  Google Scholar 

  41. Morandi, F., Horenstein, A. L., Costa, F., Giuliani, N., Pistoia, V., & Malavasi, F. (2018). CD38: A Target for Immunotherapeutic Approaches in Multiple Myeloma. Frontiers in Immunology, 9, 2722. https://doi.org/10.3389/fimmu.2018.02722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vignali, D. A. A., Collison, L. W., & Workman, C. J. (2008). How regulatory T cells work. Nature Reviews Immunology, 8(7), 523–532. https://doi.org/10.1038/nri2343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gabrilovich, D. I., & Nagaraj, S. (2009). Myeloid-derived suppressor cells as regulators of the immune system. Nature Reviews Immunology, 9(3), 162–174. https://doi.org/10.1038/nri2506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Luger, D., Yang, Y., & Raviv, A., et al. (2013). Expression of the B-Cell Receptor Component CD79a on Immature Myeloid Cells Contributes to Their Tumor Promoting Effects. Nie D, ed. PLoS ONE, 8(10), e76115. https://doi.org/10.1371/journal.pone.0076115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chambers, C. A., Kuhns, M. S., Egen, J. G., & Allison, J. P. (2001). CTLA-4-Mediated Inhibition in Regulation of T Cell Responses: Mechanisms and Manipulation in Tumor Immunotherapy. Annual Review of Immunology, 19(1), 565–594. https://doi.org/10.1146/annurev.immunol.19.1.565.

    Article  CAS  PubMed  Google Scholar 

  46. Rowshanravan, B., Halliday, N., & Sansom, D. M. (2018). CTLA-4: a moving target in immunotherapy. Blood, 131(1), 58–67. https://doi.org/10.1182/blood-2017-06-741033.

    Article  CAS  PubMed  Google Scholar 

  47. Seidel, J. A., Otsuka, A., & Kabashima, K. (2018). Anti-PD-1 and Anti-CTLA-4 Therapies in Cancer: Mechanisms of Action, Efficacy, and Limitations. Frontiers in Oncology, 8, 86. https://doi.org/10.3389/fonc.2018.00086.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zhao, Y., Yang, W., Huang, Y., Cui, R., Li, X., & Li, B. (2018). Evolving Roles for Targeting CTLA-4 in Cancer Immunotherapy. Cellular Physiology and Biochemistry, 47(2), 721–734. https://doi.org/10.1159/000490025.

    Article  CAS  PubMed  Google Scholar 

  49. Sobhani, N., Tardiel-Cyril, D. R., Davtyan, A., Generali, D., Roudi, R., & Li, Y. (2021). CTLA-4 in Regulatory T Cells for Cancer Immunotherapy. Cancers, 13(6), 1440 https://doi.org/10.3390/cancers13061440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Garon, E. B., Rizvi, N. A., & Hui, R., et al. (2015). Pembrolizumab for the Treatment of Non–Small-Cell Lung Cancer. New England Journal Medicine, 372(21), 2018–2028. https://doi.org/10.1056/NEJMoa1501824.

    Article  Google Scholar 

  51. Lu, J., & Ramirez, R. A. (2017). The Role of Checkpoint Inhibition in Non-Small Cell Lung Cancer. The Ochsner Journal, 17(4), 379–387.

    PubMed  PubMed Central  Google Scholar 

  52. Urquhart, L. (2021). Top product forecasts for 2021. Nature Review Drug Discovery, 20(1), 10–10. https://doi.org/10.1038/d41573-020-00219-5.

  53. Liu, Z., Wang, H., & Hu, C., et al. (2021). Targeting autophagy enhances atezolizumab-induced mitochondria- related apoptosis in osteosarcoma. Cell Death and Discovery, 12(2), 164. https://doi.org/10.1038/s41419-021-03449-6.

    Article  CAS  Google Scholar 

  54. Yun, C., & Lee, S. (2018). The Roles of Autophagy in Cancer. International Journal of Molecular Sciences, 19(11), 3466. https://doi.org/10.3390/ijms19113466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. DiGiulio S (2015) FDA approves Opdivo-Yervoy combo for melanoma, first combo immunotherapy regimen for Cancer. Oncology Times. https://journals.lww.com/oncology-times/blog/fdaactionsandupdates/pages/post.aspx?PostID=116].

  56. Kamath, A. V. (2016). Translational pharmacokinetics and pharmacodynamics of monoclonal antibodies. Drug Discovery Today Technologies, 21-22, 75–83. https://doi.org/10.1016/j.ddtec.2016.09.004.

    Article  PubMed  Google Scholar 

  57. Hansel, T. T., Kropshofer, H., Singer, T., Mitchell, J. A., & George, A. J. T. (2010). The safety and side effects of monoclonal antibodies. Nature Reviews Drug Discovery, 9(4), 325–338. https://doi.org/10.1038/nrd3003.

    Article  CAS  PubMed  Google Scholar 

  58. Janssen Biotech, Inc. Darzalex Faspro (Daratumumab and hyaluronidase-fihj). U.S.Food and Drug Administration website. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/761145s000lbl.pdf. Revised May 2020. Accessed April 2023.

  59. Chiavenna, S. M., Jaworski, J. P., & Vendrell, A. (2017). State of the art in anti-cancer mAbs. Journal of Biomedical Science, 24(1), 15 https://doi.org/10.1186/s12929-016-0311-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zahavi, D., & Weiner, L. (2020). Monoclonal Antibodies in Cancer Therapy. Antibodies, 9(3), 34. https://doi.org/10.3390/antib9030034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jeddi-Tehrani, M. (2018). Therapeutic monoclonal antibodies and emergence of their biosimilars. Avicenna Journal of Medical Biotechnology, 10(2), 61.

    PubMed  PubMed Central  Google Scholar 

  62. Galvão, T. F., Livinalli, A., Lopes, L. C., Zimmermann, I. R. & & Silva, M. T. (2020). Biosimilar monoclonal antibodies for cancer treatment. Cochrane Database System Review, 2020(2 Feb), CD013539. https://doi.org/10.1002/14651858.CD013539.

  63. Novimmune S.A. Gamifant (Emapalumab-lzsg). U.S.Food and Drug Administration website. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/761107lbl.pdf.Revised November 2018. Accessed September 2022.

  64. Jansenn Biotech, Inc. Darzalex (Daratumumab). U.S. Food and Drug Administration website. https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/761036s004lbl.pdf. Revised November 2016. Accessed September 2022.

  65. Bristol-Myers Squibb Company. Empliciti (Elotuzumab). U.S. Food and Drug Administration website. https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/761035s000lbl.pdf. Revised November 2015. Accessed September 2022.

  66. Amgen, Inc. Blincyto (Blinatumomab). U.S. Food and Drug Administration website. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/125557s013lbl.pdf. Revised March 2018. Accessed September 2022.

  67. Jansenn Biotech, Inc. Sylvant (Siltuximab). U.S.Food and Drug Administration website. https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/125496s018lbl.pdf. Revised December 2019. Accessed September 2022.

  68. Genentech, Inc. Gazyva (Obinutuzumab). U.S. Food and Drug Administration website. https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/125486s017s018lbl.pdf. Revised November 2017. Accessed September 2022.

  69. Genentech, Inc. Rituxan (Rituximab). U.S. Food and Drug Administration website https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/103705s5367s5388lbl.pdf. Revised October 2012. Accessed September 2022.

  70. Bristol Myers Squibb Company. Opdualag (Nivolumab and Relatlimab-rmbw). U.S. Food and Drug Administration website. https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/103705s5367s5388lbl.pdf. Revised March 2022. Accessed September 2022.

  71. GlaxoSmithKline LLC. Jemperli (Dostarlimab-gxly). U.S. Food and Drug Administration website. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/761223s000lbl.pdf. Revised August 2021. Accessed September 2022.

  72. Janssen Biotech, Inc. Rybervant (Amivantamab-vmjw). U.S. Food And Drug Administration website. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/761210s000lbl.pdf. Revised May 2021. Accessed September 2022.

  73. Viela Bio, Inc. Uplizna (Inebilizumab-cdon). U.S. Food and Drug Administration website. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/761142s000lbl.pdf. Revised June 2020. Accessed September 2022.

  74. Regeneron Pharmaceuticals, Sanofi Ltd. Libtayo (Cemiplimab-rwlc). U.S. Food and Drug Administration website. https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/761097s001lbl.pdf. Revised March 2019. Accessed September 2022.

  75. EMD Serono, Inc, Pfizer, Inc. Bavencio (Avelumab). U.S. Food and Drug Administration website. https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/761049s006lbl.pdf. Revised May 2019. Accessed September 2022.

  76. AstraZeneca Pharma Ltd. Imfinzi (Durvalumab). U.S. Food and Drug Administration website. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/761069s029lbl.pdf. Revised February 2021. Accessed September 2022.

  77. Genentech, Inc. Tecentriq (Atezolizumab). U.S. Food and Drug Administration website. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/761034s028lbl.pdf. Revised July 2020. Accessed September 2022.

  78. Eli Lilly and Co. Pvt. Ltd. Lartruvo (Olaratumab). U.S. Food and Drug Administration website. https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/761038lbl.pdf. Revised October 2016. Accessed September 2022.

  79. United Therapeutics Corporation. Unituxin (Dinutuximab). U.S. Food and Drug Administration website. https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/125516s000lbl.pdf. Revised March 2015. Accessed September 2022.

  80. Eli Lilly and Co. Pvt. Ltd. Portrazza (Necitumumab). U.S. Food and Drug Administration website. https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/125547s000lbl.pdf. Revised November 2015. Accessed September 2022.

  81. Eli Lilly and Co. Pvt. Ltd. Cyramza (Ramucirumab). U.S. Food and Drug Administration website. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/125477s034lbl.pdf. Revised May 2020. Accessed September 2022.

  82. Merck and Co., Inc. Keytruda (Pembrolizumab). U.S. Food and Drug Administration website. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/125514s096lbl.pdf. Revised March 2021. Accessed September 2022.

  83. Bristol Myers Squibb Company. Opdivo (Nivolumab). U.S. Food and Drug Administration website. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/125554s090lbl.pdf. Revised January 2021. Accessed September 2022.

  84. Genentech, Inc. Perjeta (Pertuzumab). U.S. Food and Drug Administration website. https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/125409lbl.pdf. Revised June 2012. Accessed September 2022.

  85. Eli Lilly and Co. Pvt. Ltd. Erbitux (Cetuximab). U.S. Food and Drug Administration website. https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/125084s273lbl.pdf. Revised April 2019. Accessed September 2022.

  86. Bristol Myers Squibb Company. Yervoy (Ipilimumab). U.S. Food and Drug Administration website. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/125377s094lbl.pdf. Revised April 2018. Accessed September 2022.

  87. Genentech, Inc. Herceptin (Trastuzumab). U.S. Food and Drug Administration website. https://www.accessdata.fda.gov/drugsatfda_docs/label/2010/103792s5250lbl.pdf. Revised October 2010. Accessed September 2022.

  88. Janssen Biotech, Inc. Tecvayli (Teclistamab-cqyv). U.S. Food and Drug Administration website. https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/761291s000lbl.pdf. Revised October 2022. Accessed April 2023.

  89. ADC Therapeutics SA. Zynlonta (Loncastuximab tesirine-lpyl). U.S. Food and Drug Administration website. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/761196s000lbl.pdf. Revised April 2021. Accessed September 2022.

  90. GlaxoSmithKline Pharmaceuticals Ltd. Blenrep (Belantamab mafodotin-blmf). U.S. Food and Drug Administration website. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/761158s000lbl.pdf. Revised August 2020. Accessed September 2022.

  91. Genentech, Inc. Polivy (Polatuzumab vedotin-piiq). U.S. Food and Drug Administration website. https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/761121s000lbl.pdf. Revised June 2019. Accessed September 2022.

  92. AstraZeneca Pharma Ltd. Lumoxiti (Moxetumomab pasudotox-tdfk). U.S. Food and Drug Administration website. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/761104s000lbl.pdf. Revised September 2018. Accessed September 2022.

  93. Wyeth Pharmaceuticals LLC, Pfizer, Inc. Besponsa (Inotuzumab ozogamicin). U.S. Food and Drug Administration website. https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/761040s000lbl.pdf. Revised August 2017. Accessed September 2022.

  94. Seattle Genetics, Inc. Adcetris (Brentuximab vedotin). U.S. Food and Drug Administration website. https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/125388_s056s078lbl.pdf. Revised November 2014. Accessed September 2022.

  95. AstraZeneca Pharma Ltd. Imjudo (Tremelimumab-actl). U.S. Food and Drug Administration website. https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/761270s000lbl.pdf. Revised November 2022. Accessed April 2023.

  96. Seagen Inc. U.S. Tivdak (Tisotumab vedotin-tftv). U.S. Food and Drug Administration website. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/761208Orig1s000lbledt.pdf. Revised September 2021. Accessed September 2022.

  97. Immunomedics, Inc. Trodelvy (Sacituzumab govitecan-hziy). U.S. Food and Drug Administration website. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/761115s009lbl.pdf. Revised April 2021. Accessed September 2022.

  98. Astellas Pharma, Inc., Seattle Genetics, Inc. Padcev (Enfortumab vedotin-ejfv). U.S. Food and Drug Administration website. https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/761137s000lbl.pdf. Revised December 2019. Accessed September 2022.

  99. Daiichi Sankyo, Inc., AstraZeneca Pharma Ltd. Enhertu (Fam-trastuzumab deruxtecan-nxki). U.S. Food and Drug Administration website. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/761139s011lbl.pdf. Revised January 2021. Accessed September 2022.

  100. Genentech, Inc. Kadcyla (Ado-trastuzumab emtansine). U.S. Food and Drug Administration website. https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/125427s105lbl.pdf. Revised May 2019. Accessed September 2022.

Download references

Author information

Authors and Affiliations

Authors

Contributions

V.K., A.K., B.N., and T.S. all contributed to the study concept. Material preparation, data collection and paper writing was performed by V.K., A.K., and B.N. A.K. prepared the Figures. T.S. provided guidance on literature search/core concepts and scientifically edited the paper at various stages. All authors read and approved the final paper.

Corresponding author

Correspondence to Tina Saldanha.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval

This was a literature based review and did not involve human or animal subjects. No ethical approval was required by our Institute Ethics Committee.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kardile, V., Kulkarni, A., Nadar, B. et al. Monoclonal Antibodies in Oncology: A Decade of Novel Options. Cell Biochem Biophys 81, 395–408 (2023). https://doi.org/10.1007/s12013-023-01144-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-023-01144-1

Keywords

Navigation