Log in

Antitumor Effect of TRAIL on Oral Squamous Cell Carcinoma using Magnetic Nanoparticle-Mediated Gene Expression

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

A Correction to this article was published on 30 July 2022

This article has been updated

Abstract

We developed a new magnetic nanovector to improve the efficiency and targeting of transgene therapy for oral squamous cell carcinoma (OSCC). Positively charged polymer PEI-modified Fe3O4 magnetic nanoparticles were tested as gene transfer vectors in the presence of a magnetic field. The Fe3O4 nanoparticles were prepared by a co-precipitation method and had good dispersibility in water. These nanoparticles modified by PEI were combined with negatively charged pACTERT-EGFP via electrostatic interaction. The transfection efficiency of the magnetic nano-gene vector with the magnetic field was determined by a fluorescence-inverted microscope and flow cytometry. The results showed significant improvement compared with the control group (p < 0.05). The magnetic complexes also exhibited up to 6-times higher transfection efficiency compared with commonly used PEI or lipofectin. On the basis of these results, the antitumor effect with suicide gene therapy using pACTERT-TRAIL in vitro and vivo was evaluated. In vitro apoptosis was determined with the Annexin V-FITC Apoptosis Detection Kit. The results suggested that PEI-modified Fe3O4 nanoparticles could mediate the killing of Tca83 cells. Furthermore, treatment with pACTERT-TRAIL delivered by magnetic nanoparticles showed a significant cytostatic effect through the induction of apoptosis in a xenograft model. This indicates that magnetic nano-gene vectors could improve the transgene efficiency for Tca83 cells and could exhibit antitumor functions with the plasmid pACTERT-TRAIL. This may be a new way to treat OSCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

References

  1. Shah, J. P., & Singh, B. (2006). Keynote comment: Why the lack of progress for oral cancer? The Lancet Oncology, 7, 356–357.

    Article  PubMed  Google Scholar 

  2. Gibson, M. K., & Forastiere, A. A. (2006). Reassessment of the role of induction chemotherapy for head and neck cancer. The Lancet Oncology, 7, 565–574.

    Article  PubMed  Google Scholar 

  3. Wiley, S. R., Schooley, K., Smolak, P. J., et al. (1995). Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity, 3, 673–682.

    Article  CAS  PubMed  Google Scholar 

  4. Pitti, R. M., Marsters, S. A., Ruppert, S., et al. (1996). Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. Journal of Biological Chemistry, 271, 12687–12690.

    Article  CAS  PubMed  Google Scholar 

  5. Kim, K., Fisher, M. J., Xu, S. Q., & El-Deiry, W. S. (2000). Molecular determinants of response to TRAIL in killing of normal and cancer cells. Clinical Cancer Research, 6, 335–346.

    CAS  PubMed  Google Scholar 

  6. Armeanu, S., Lauer, U. M., Smirnow, I., Schenk, M., Weiss, T. S., Gregor, M., et al. (2003). Adenoviral gene transfer of tumor necrosis factor–related apoptosis inducing ligand overcomes an impaired response of hepatoma cells but causes severe apoptosis in primary human hepatocytes. Cancer Research, 63, 2369–2372.

    CAS  PubMed  Google Scholar 

  7. Jacob, D., Davis, J., Zhu, H., Zhang, L., Teraishi, F., & Wu, S. (2004). Suppressing orthotopic pancreatic tumor growth with a fiber-modified adenovector expressing the TRAIL gene from the human telomerase reverse transcriptase promoter. Clinical Cancer Research, 10, 3535–3541.

    Article  CAS  PubMed  Google Scholar 

  8. Griffith, T. S., Fialkov, J. M., Scott, D. L., Azuhata, T., Williams, R. D., Wall, N. R., et al. (2002). Induction and regulation of tumor necrosis factor–related apoptosis-inducing ligand/Apo-2 ligand-mediated apoptosis in renal cell carcinoma. Cancer Research, 62, 3093–3099.

    CAS  PubMed  Google Scholar 

  9. Voelkel-Johnson, C., King, D. L., & Norris, J. S. (2002). Resistance of prostate cancer cells to soluble TNF-related apoptosis-inducing ligand (TRAIL/Apo2L) can be overcome by doxorubicin or adenoviral delivery of full-length TRAIL. Cancer Gene Therapy, 9, 164–172.

    Article  CAS  PubMed  Google Scholar 

  10. Yamanaka, T., Shiraki, K., Sugimoto, K., et al. (2000). Chemotherapeutic agents augment TRAIL-induced apoptosis in human hepatocellular carcinoma cell lines. Hepatology, 32, 482–490.

    Article  CAS  PubMed  Google Scholar 

  11. Kim, C. Y., Jeong, M., Mushiake, H., Kim, B. M., Kim, W. B., Ko, J. P., et al. (2006). Cancer gene therapy using a novel secretable trimeric TRAIL. Gene Therapy, 13, 330–338.

    Article  CAS  PubMed  Google Scholar 

  12. Argiris, K., Panethymitaki, C., & Tavassoli, M. (2011). Naturally occurring, tumor-specific, therapeutic proteins. Experimental Biology and Medicine (Maywood), 236, 524–536.

    Article  CAS  Google Scholar 

  13. Gu, J., Kagawa, S., Takakura, M., Kyo, S., Inouse, M., Roth, J. A., et al. (2000). Tumorspecific transgene expression from the human telomerase reverse transcriptase promoter enables targeting of the therapeutic effects of the Bax gene to cancers. Cancer Research, 60, 5359–5364.

    CAS  PubMed  Google Scholar 

  14. Hodes, R. (2001). Molecular targeting of cancer: Telomeres as targets. Proceedings of the National Academy of Sciences of the United States of America, 98, 7649–7651.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Liao, J., Mitsuyasu, T., Yamane, K., & Ohishi, M. (2000). Telomerase activity in oral and maxillofacial tumors. Oral Oncology, 36, 347–352.

    Article  CAS  PubMed  Google Scholar 

  16. Zang, G., Miao, L., Mu, Y., et al. (2009). Adenoviral mediated transduction of adenoid cystic carcinoma by human TRAIL gene driven with hTERT tumor-specific promoter induces apoptosis. Cancer Biology and Therapy, 8(10), 966–972.

    Article  CAS  PubMed  Google Scholar 

  17. Sanvicens, N., & Marco, M. P. (2008). Multifunctional nanoparticles–properties and prospects for their use in human medicine. Trends in Biotechnology, 26(8), 425–433.

    Article  CAS  PubMed  Google Scholar 

  18. Nehilla, Barrett J., Allen, Philip G., & Desai, Tejal A. (2008). Surfactant-free, drug-quantum-dot coloaded poly(lactide-co-glycolide) nanoparticles: Towards multifunctional nanoparticles. ACS Nano, 2(3), 538–544.

    Article  CAS  PubMed  Google Scholar 

  19. Wang, Lingyan, Luo, **, Schadt, Mark J., & Zhong, Chuan-Jian. (2010). Thin film assemblies of molecularly-linked metal nanoparticles and multifunctional properties. Langmuir, 26(2), 618–632.

    Article  CAS  PubMed  Google Scholar 

  20. Pellegrino, T., Kudera, S., Liedl, T., Muñoz Javier, A., Manna, L., & Parak, W. J. (2005). On the development of colloidal nanoparticles towards multifunctional structures and their possible use for biological applications. Small, 1(1), 48–63.

    Article  CAS  PubMed  Google Scholar 

  21. Lee, Mei-Hwa, Thomas, James L., Ho, Min-Hsien, Yuan, Ching, & Lin, Hung-Yin. (2010). Synthesis of magnetic molecularly imprinted poly(ethylene-co-vinyl alcohol) nanoparticles and their uses in the extraction and sensing of target molecules in urine. ACS Applied Materials and Interfaces, 2(6), 1729–1736.

    Article  CAS  PubMed  Google Scholar 

  22. Mahmoudi, Morteza, Simchi, Abdolreza, Imani, Mohammad, & Hfeli, Urs O. (2009). Superparamagnetic iron oxide nanoparticles with rigid cross-linked polyethylene glycol fumarate coating for application in imaging and drug delivery. Journal of Physical Chemistry C, 113(19), 8124–8131.

    Article  CAS  Google Scholar 

  23. Williams, P. S., Carpino, F., & Zborowski, M. (2009). Magnetic nanoparticle drug carriers and their study by quadrupole magnetic field-flow fractionation. Molecular pharmaceutics, 6(5), 1290–1306.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Liong, M., Lu, J., Kovochich, M., **a, T., Ruehm, S. G., Nel, A. E., et al. (2008). Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano, 2(5), 889–896.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Gao, **hao, Hongwei, Gu, & Bing, Xu. (2009). Multifunctional magnetic nanoparticles: Design, synthesis, and biomedical applications. Accounts of Chemical Research, 42(8), 1097–1107.

    Article  CAS  PubMed  Google Scholar 

  26. Mori, Kohsuke, Kondo, Yuichi, Morimoto, Shotaro, & Yamashita, Hiromi. (2008). Synthesis and multifunctional properties of superparamagnetic iron oxide nanoparticles coated with mesoporous silica involving single-site Ti oxide moiety. Journal of Physical Chemistry C, 112, 397–404.

    Article  CAS  Google Scholar 

  27. Sun, C., Du, K., Fang, C., Bhattarai, N., Veiseh, O., Kievit, F., et al. (2010). PEG-mediated synthesis of highly dispersive multifunctional superparamagnetic nanoparticles: Their physicochemical properties and function in vivo. ACS Nano, 4(4), 2402–2410.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Jain, T., Morales, M., Sahoo, S., et al. (2005). Iron oxide nanoparticles for sustained delivery of anticancer agents. Molecular Pharmaceutics, 2(3), 194–205.

    Article  CAS  PubMed  Google Scholar 

  29. Son, S., Reichel, J., He, B., et al. (2005). Magnetic nanotubes for magnetic-field-assisted bioseparation, biointeraction, and drug delivery. Journal of the American Chemical Society, 127(20), 7316–7317.

    Article  CAS  PubMed  Google Scholar 

  30. Namgung, R., Singha, K., Yu, M. K., Jon, S., Kim, Y. S., Ahn, Y., et al. (2010). Hybrid superparamagnetic iron oxide nanoparticle-branched polyethylenimine magnetoplexes for gene transfection of vascular endothelial cells. Biomaterials, 31(14), 4204–4213.

    Article  CAS  PubMed  Google Scholar 

  31. Zheng, X., Lu, J., Deng, L., **ong, Y., & Chen, J. (2009). Preparation and characterization of magnetic cationic liposome in gene delivery. International Journal of Pharmaceutics, 366(1–2), 211–217.

    Article  CAS  PubMed  Google Scholar 

  32. Kievit, F. M., Veiseh, O., Fang, C., Bhattarai, N., Lee, D., Ellenbogen, R. G., et al. (2010). Chlorotoxin labeled magnetic nanovectors for targeted gene delivery to glioma. ACS Nano, 4(8), 4587–4594.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Scherer, F., Anton, M., Schillinger, U., et al. (2002). Magnetofection: Enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Therapy, 9(2), 102–109.

    Article  CAS  PubMed  Google Scholar 

  34. Moore, A., Marecos, E., Bogdanov, A, Jr, et al. (2000). Tumoral distribution of long-circulating dextran-coated iron oxide nanoparticles in a rodent model. Radiology, 214(2), 568–574.

    Article  CAS  PubMed  Google Scholar 

  35. Kamau, W., Hassa, P., Steitz, B., et al. (2006). Enhancement of the efficiency of non-viral gene delivery by application of pulsed magnetic field. Nucleic Acids Research, 34(5), e40.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Kadota, S., Kanayama, T., Miyajima, N., et al. (2005). Enhancing of measles virus infection by magnetofection. Journal of Virological Methods, 128(1–2), 61–66.

    Article  CAS  PubMed  Google Scholar 

  37. Morishita, N., Nakagami, H., Morishita, R., et al. (2005). Magnetic nanoparticles with surface modification enhanced gene delivery of HVJ-E vector. Biochemical and Biophysical Research Communications, 334(4), 1121–1126.

    Article  CAS  PubMed  Google Scholar 

  38. Plank, C., Anton, M., Rudolph, C., et al. (2003). Enhancing and targeting nucleic acid delivery by magnetic force. Expert Opinion on Biological Therapy, 3, 745–758.

    Article  CAS  PubMed  Google Scholar 

  39. Boussif, O., Lezoualc’h, F., Zanta, M. A., Mergny, M. D., Scherman, D., Demeneix, B., et al. (1995). A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: Polyethylenimine. Proceedings of the National Academy of Sciences of the United States of America, 92(16), 7297–7301.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Miao, L., Zhang, K., Qiao, C., **, X., Zheng, C., Yang, B., et al. (2013). Antitumor effect of human TRAIL on adenoid cystic carcinoma using magnetic nanoparticle-mediated gene expression. Nanomedicine: Nanotechnology, Biology, and Medicine, 9(1), 141–150.

    Article  CAS  Google Scholar 

  41. Lee, H., Lee, E., Kim do, K., Jang, N. K., Jeong, Y. Y., & Jon, S. (2006). Antibiofouling polymer-coated superparamagnetic iron oxide nanoparticles as potential magnetic resonance contrast agents for in vivo cancer imaging. Journal of the American Chemical Society, 128, 7383–7389.

    Article  CAS  PubMed  Google Scholar 

  42. Pan, X., Guan, J., Yoo, J. W., Epstein, A. J., Lee, L. J., & Lee, R. J. (2008). Cationic lipid coated magnetic nanoparticles associated with transferring for gene delivery. International Journal of Pharmaceutics, 358, 263–270.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (No: 81300852, 30672338, 30740420551 and 30830108), Jiangsu Province Natural Science Foundation of China (BK20130079), the Youth Start Fund of Nan**g City (No. 2011-19-198*), the Third Level Fund for the Young Talents in the Health Field of Nan**g City. We thank Dr. Shenglin Li at Peking University, China for a gift of the Tca83 cell line.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongchen Sun or Qingang Hu.

Additional information

Leiying Miao and Chao Liu have contributed to this work equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miao, L., Liu, C., Ge, J. et al. Antitumor Effect of TRAIL on Oral Squamous Cell Carcinoma using Magnetic Nanoparticle-Mediated Gene Expression. Cell Biochem Biophys 69, 663–672 (2014). https://doi.org/10.1007/s12013-014-9849-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-9849-z

Keywords

Navigation