Log in

Assessment of Transfection of AdCMV-EGFP to Rat Submandibular Gland Cells

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

We evaluated the efficiency of transfecting adenoviral vectors encoding enhanced green fluorescent protein (AdCMV-EGFP) into rat submandibular gland cells and the effects of gene transfer on cell proliferation and secretory function. Isolated submandibular gland cells were transfected with different titers (or multiplicity of infection, MOI) of AdCMV-EGFP. The transfection efficiency was evaluated by quantifying EGFP-positive cells by inverted fluorescence microscopy, cell proliferation by MTT assay, and cell secretory activity by measuring α-amylase in culture medium. A transfection efficiency of up to 70.8 % was achieved in submandibular gland cells. MTT assay showed that increased viral titers resulted in significant inhibition of cell proliferation, which occurs on day 5 post-transfection. Simultaneously, the amylase levels started to reduce with a significant decrease on day 7 after transfection. The results show that AdCMV-EGFP transfection of submandibular gland cells at higher MOI results in cytotoxicity, decreased cell proliferation, and secretory function. However, the lower adenoviral titers (e.g., 200 particles/cell) could be an efficient and safe labeling tool for gene transfer to submandibular gland cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Misra, S. (2013). Human gene therapy: A brief overview of the genetic revolution. Journal of the Association of Physicians of India, 61(2), 127–133.

    PubMed  Google Scholar 

  2. Yang, J., Liu, H., & Zhang, X. (2014). Design, preparation and application of nucleic acid delivery carriers. Biotechnology Advances, 32(4), 804–817.

    Article  CAS  PubMed  Google Scholar 

  3. Katz, M. G., Fargnoli, A. S., Williams, R. D., et al. (2013). Gene therapy delivery systems for enhancing viral and nonviral vectors for cardiac diseases: Current concepts and future applications. Human Gene Therapy, 24(11), 914–927.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Kay, M. A. (2011). State-of-the-art gene-based therapies: The road ahead. Nature Reviews Genetics, 12(5), 316–328.

    Article  CAS  PubMed  Google Scholar 

  5. Parhiz, H., Shier, W. T., & Ramezani, M. (2013). From rationally designed polymeric and peptidic systems to sophisticated gene delivery nano-vectors. International Journal of Pharmaceutics, 457(1), 237–259.

    Article  CAS  PubMed  Google Scholar 

  6. Yao, J., Fan, Y., Li, Y., et al. (2013). Strategies on the nuclear-targeted delivery of genes. Journal of Drug Targeting, 21(10), 926–939.

    Article  CAS  PubMed  Google Scholar 

  7. Mohit, E., & Rafati, S. (2013). Biological delivery approaches for gene therapy: Strategies to potentiate efficacy and enhance specificity. Molecular Immunology, 56(4), 599–611.

    Article  CAS  PubMed  Google Scholar 

  8. Kaufmann, K. B., Büning, H., Galy, A., et al. (2013). Gene therapy on the move. EMBO Molecular Medicine, 5(11), 1642–1661.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Herzog, R. W., Cao, O., & Srivastava, A. (2010). Two decades of clinical gene therapy–success is finally mounting. Discovery Medicine, 9(45), 105–111.

    PubMed Central  PubMed  Google Scholar 

  10. Baum, B. J., & O’Connell, B. C. (1995). The impact of gene therapy on dentistry. Journal of the American Dental Association, 126(2), 179–189.

    Article  CAS  PubMed  Google Scholar 

  11. Baum, B. J., & O’Connell, B. C. (1999). In vivo gene transfer to salivary glands. Critical Reviews in Oral Biology and Medicine, 10(3), 276–283.

    Article  CAS  PubMed  Google Scholar 

  12. Hoque, A. T., Yamano, S., Baccaglini, L., et al. (2001). Using salivary glands as a tissue target for gene therapeutics. Journal of Drug Targeting, 9(6), 485–494.

    Article  CAS  PubMed  Google Scholar 

  13. Vitolo, J. M., & Baum, B. J. (2002). The use of gene transfer for the protection and repair of salivary glands. Oral Diseases, 8(4), 183–191.

    Article  CAS  PubMed  Google Scholar 

  14. Kasala, D., Choi, J. W., Kim, S. W., et al. (2014). Utilizing adenovirus vectors for gene delivery in cancer. Expert Opinion on Drug Delivery, 11(3), 379–392.

    Article  CAS  PubMed  Google Scholar 

  15. Wang, D., Zhong, L., Nahid, M. A., et al. (2014). The potential of adeno-associated viral vectors for gene delivery to muscle tissue. Expert Opinion on Drug Delivery, 11(3), 345–364.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Skubis-Zegadło, J., Stachurska, A., & Małecki, M. (2013). Vectrology of adeno-associated viruses (AAV). Medycyna wieku rozwojowego, 17(3), 202–206.

    PubMed  Google Scholar 

  17. Olszko, M. E., & Trobridge, G. D. (2013). Foamy virus vectors for HIV gene therapy. Viruses, 5(10), 2585–2600.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Khan, K. H. (2013). Gene expression in mammalian cells and its applications. Advanced Pharmaceutical Bulletin, 3(2), 257–263.

    PubMed Central  PubMed  Google Scholar 

  19. Jiang, T., **ng, B., & Rao, J. (2008). Recent developments of biological reporter technology for detecting gene expression. Biotechnology and Genetic Engineering Reviews, 25, 41–75.

    Article  CAS  PubMed  Google Scholar 

  20. Kang, J. H., & Chung, J. K. (2008). Molecular-genetic imaging based on reporter gene expression. Journal of Nuclear Medicine, 49(Suppl 2), 164S–179S.

    Article  CAS  PubMed  Google Scholar 

  21. Tsien, R. (1998). The green fluorescent protein. Annual Review of Biochemistry, 67, 509–544.

    Article  CAS  PubMed  Google Scholar 

  22. Chudakov, D. M., Matz, M. V., Lukyanov, S., et al. (2010). Fluorescent proteins and their applications in imaging living cells and tissues. Physiological Reviews, 90(3), 1103–1163.

    Article  CAS  PubMed  Google Scholar 

  23. Wiedenmann, J., Oswald, F., & Nienhaus, G. U. (2009). Fluorescent proteins for live cell imaging: opportunities, limitations, and challenges. IUBMB Life, 61(11), 1029–1042.

    Article  CAS  PubMed  Google Scholar 

  24. Cormack, B. P., Valdivia, R. H., & Falkow, S. (1996). FACS-optimized mutants of the green fluorescent protein (GFP). Gene, 173(1), 33–38.

    Article  CAS  PubMed  Google Scholar 

  25. Stephens, D., & Allan, V. (2003). Light microscopy techniques for live cell imaging. Science, 300(5616), 82–86.

    Article  CAS  PubMed  Google Scholar 

  26. Koizumi, M., Ito, D., Fujimoto, K., et al. (2004). Conditional transformation of mouse pancreatic epithelial cells: an in vitro model for analysis of genetic events in pancreatocarcinogenesis. Biochemical and Biophysical Research Communications, 319(2), 612–621.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from the National Natural Science Foundation (No:81271155, 30830108, 81300852), Jiangsu Province Natural Science Foundation of China (BK20130079), Key Project of Science and Technology Bureau of Jiangsu Province(No.BL2013002), the Youth Start Fund of Nan**g City, (No. 2011-19-198*), and The Third Level Fund for the Young Talents in the Health Field of Nan**g City.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Leiying Miao or Hongchen Sun.

Additional information

Chao Liu and Leiying Miao have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Miao, L., Sun, W. et al. Assessment of Transfection of AdCMV-EGFP to Rat Submandibular Gland Cells. Cell Biochem Biophys 71, 147–153 (2015). https://doi.org/10.1007/s12013-014-0177-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-0177-0

Keywords

Navigation