Log in

Effect of Recombinant hPTEN Gene Expression on PDGF Induced VSMC Proliferation

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Human phosphatase and tensin homolog (hPTEN) gene was expressed in vascular smooth muscle cells (VSMCs) to study its effect on VSMC proliferation induced in platelet-derived growth factor (PDGF) conditioned medium. After G418 selection, MTT assay was conducted to examine transfected VSMC proliferation induced in human PDGF conditioned medium. We successfully constructed eukaryotic expression vector pcDNA4/myc-His-PTEN and transferred into VSMC cells. We report that in vitro proliferation of VSMC was inhibited in PTEN transfected VSMCs induced in PDGF conditioned medium. RT-PCR and Western blot results indicated significantly high levels of protein kinase B-PKB and nuclear factor kappa B mRNA and protein, respectively, in PDGF group as compared with the control group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kähäri, V. M., Chen, Y. Q., Su, M. W., Ramirez, F., & Uitto, J. (1990). Tumor necrosis factor-α and Interferon-γ suppress the activation of human type I collagen gene expression by transforming growth factor-β1. Evidence for two distinct mechanisms of inhibition at the transcriptional and posttranscriptional levels. Journal of Clinical Investigation, 86(5), 1489–1495.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Faries, P. L., Rohan, D. I., Wyers, M. C., Marin, M. L., Hollier, L. H., Quist, W. C., et al. (2002). Vascular smooth muscle cells derived from atherosclerotic human arteries exhibit greater adhesion, migration, and proliferation than venous cells. Journal of Surgical Research, 104(1), 22–28.

    Article  PubMed  Google Scholar 

  3. Nilsson, J. (1993). Cytokines and smooth muscle cells in atherosclerosis. Cardiovascular Research, 27(7), 1184–1190.

    Article  PubMed  CAS  Google Scholar 

  4. Liu, Z., Hou, P., Ji, M., Guan, H., Studeman, K., Jensen, K., et al. (2008). Highly prevalent genetic alterations in receptor tyrosine kinases and phosphatidylinositol 3-kinase/akt and mitogen-activated protein kinase pathways in anaplastic and follicular thyroid cancers. Journal of Clinical Endocrinology and Metabolism, 93(8), 3106–3116.

    Article  PubMed  CAS  Google Scholar 

  5. Braun-Dullaeus, R. C., Mann, M. J., Seay, U., Zhang, L., von Der Leyen, H. E., Morris, R. E., et al. (2001). Cell cycle protein expression in vascular smooth muscle cells in vitro and in vivo is regulated through phosphatidylinositol 3-kinase and mammalian target of rapamycin. Arteriosclerosis, Thrombosis, and Vascular Biology, 21(7), 1152–1158.

    Article  PubMed  CAS  Google Scholar 

  6. Downward, J. (1998). Mechanisms and consequences of activation of protein kinase B/Akt. Current Opinion in Cell Biology, 10(2), 262–267.

    Article  PubMed  CAS  Google Scholar 

  7. Blanco-Aparicio, C., Renner, O., Leal, J. F., & Carnero, A. (2007). PTEN, more than the AKT pathway. Carcinogenesis, 28(7), 1379–1386.

    Article  PubMed  CAS  Google Scholar 

  8. Sarbassov, D. D., Guertin, D. A., Ali, S. M., & Sabatini, D. M. (2005). Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science, 307(5712), 1098–1101.

    Article  PubMed  CAS  Google Scholar 

  9. Myers, M. P., Pass, I., Batty, I. H., Van der Kaay, J., Stolarov, J. P., Hemmings, B. A., et al. (1998). The lipid phosphatase activity of PTEN is critical for its tumor supressor function. Proceeding of the National Academy of Science of the USA, 95(23), 13513–13518.

    Article  CAS  Google Scholar 

  10. Kempe, S., Kestler, H., Lasar, A., & Wirth, T. (2005). NF-kappa B controls the global pro-inflammatory response in endothelial cells: evidence for the regulation of a pro-atherogenic program. Nucleic Acids Research, 33(16), 5308–5319.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Horie, S., Harada, T., Mitsunari, M., Taniguchi, F., Iwabe, T., & Terakawa, N. (2005). Progesterone and progestational compounds attenuate tumor necrosis factor alpha-induced interleukin-8 production via nuclear factor kappa B inactivation in endometriotic stromal cells. Fertility and Sterility, 83(5), 1530–1535.

    Article  PubMed  CAS  Google Scholar 

  12. Li, D. M., & Sun, H. (1997). TEP1, encoded by a candidate tumor suppressor locus, is a novel protein tyrosine phosphatase regulated by transforming growth factor beta. Cancer Research, 57(11), 2124–2129.

    PubMed  CAS  Google Scholar 

  13. Meng, F., & D’Mello, S. R. (2003). NF-kappa B stimulates Akt phosphorylation and gene expression by distinct signaling mechanisms. Biochimica et Biophysica Acta, 1630(1), 35–40.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yarong Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, C., Liu, S., Sun, Y. et al. Effect of Recombinant hPTEN Gene Expression on PDGF Induced VSMC Proliferation. Cell Biochem Biophys 70, 1185–1190 (2014). https://doi.org/10.1007/s12013-014-0039-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-0039-9

Keywords

Navigation