Log in

CHO Proteome Alterations Induced by Reverse Transformation

  • Letter to the Editor
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abdolzade-Bavil, A., Hayes, S., Goretzki, L., Kroger, M., Anders, J., & Hendriks, R. (2004). Convenient and versatile subcellular extraction procedure, that facilitates classical protein expression profiling and functional protein analysis. Proteomics, 4, 1397–1405.

    Article  PubMed  CAS  Google Scholar 

  2. Annesley, T. M. (2003). Ion suppression in mass spectrometry. Clinical Chemistry, 49, 1041–1044.

    Article  PubMed  CAS  Google Scholar 

  3. Belmont, A., & Nicolini, C. (1982). Cell versus nuclear morphometry of serum stimulated fibroblasts: Nuclear changes precede cell changes. Journal of Cell Science, 58, 201–202.

    PubMed  CAS  Google Scholar 

  4. Bradford, M. M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilising the principle of protein-dye binding. Analytical Biochemistry, 72, 142–146.

    Article  Google Scholar 

  5. LaBaer, J., & Ramachandran, N. (2005). Protein microarrays as tools for functional proteomics. Current Opinion in Chemical Biology, 9, 14–19.

    Article  PubMed  CAS  Google Scholar 

  6. Lypowy, J., Chen, I. Y., & Abdellatif, M. (2005). An alliance between Ras GTPase-activating protein, filamin C, and Ras GTPase-activating protein SH3 domain-binding protein regulates myocyte growth. Journal of Biological Chemistry, 280(27), 25717–25728.

    Article  PubMed  CAS  Google Scholar 

  7. Nicolini, C., & Beltrame, F. (1982). Coupling of chromatin structure to cell geometry during the cell cycle. Transformed versus reverse-transformed CHO. Cell Biology International Reports, 6, 63–71.

    Article  PubMed  CAS  Google Scholar 

  8. Puck, T. T. (2002). Cyclic AMP and reverse transformation reaction. Annual New York Academy of Science, 968, 122–138.

    Article  CAS  Google Scholar 

  9. Puck, T. T., Webb, P., & Johnson, R. (1998). Genome exposure and regulation in mammalian cells. Somatic Cell and Molecular Genetics, 24, 291–302.

    Article  PubMed  CAS  Google Scholar 

  10. Puck, T. T., Webb, P., & Johnson, R. (2002). Cyclic AMP and reverse transformation reaction. Annals of the New York Academy of Sciences, 968, 122–138.

    Article  PubMed  CAS  Google Scholar 

  11. Ramachandran, N., Hainsworth, E., Bhullar, B., Eisenstein, S., Rosen, B., Lau, A. Y., et al. (2004). Self-assembling protein microarrays. Science, 305(5680), 86–90.

    Article  PubMed  CAS  Google Scholar 

  12. Rios-Doria, J., Kuefer, R., Ethier, S. P., & Day, M. L. (2004). Cleavage of beta-catenin by calpain in prostate and mammary tumor cells. Cancer Research, 64, 7237–7240.

    Article  PubMed  CAS  Google Scholar 

  13. Saika, S., Ikeda, K., Yamanaka, O., Miyamoto, T., Ohnishi, Y., Sato, M., et al. (2005). Expression of Smad7 in mouse eyes accelerates healing of corneal tissue after exposure to alkali. American Journal of Pathology, 166, 1405–1418.

    Article  PubMed  CAS  Google Scholar 

  14. Spera, R., & Nicolini, C. (2007). 2007. c-AMP induced alterations of Chinese hamster ovary cells monitored by mass spectrometry. Journal of Cellular Biochemistry, 102, 473–482.

    Article  PubMed  CAS  Google Scholar 

  15. Spera, R. & Nicolini, C. (2008). Nappa microarrays and mass spectrometry: New trends and challenges. In Essentials in nanoscience booklet series. Philadelphia, PA: Taylor & Francis Group, LLC. 15 Jan 2008.

  16. Wong, C., Sridhara, S., Bardwell, J. C. A., & Jakob, U. (2000). Heating greatly speeds Coomassie blue staining and destaining. Bio-Techniques, 28, 426–432.

    CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by grants to Fondazione El.B.A. Nicolini by MIUR (Ministero dell’Istruzione, Università e Ricerca) for ‘‘Funzionamento’’, by a FIRB International Grant on Proteomics and Cell Cycle (RBIN04RXHS) from MIUR to CIRSDNNOB-Nanoworld Institute and by a FIRB ITALNANONET on Nanobiosensors (RBPR05JH2P_003) from MIUR both to Prof. Claudio Nicolini, University of Genova. GRANT SPONSOR: MIUR (Ministero dell'Istruzione, Università e Ricerca). GRANT CONTRACTS: Funzionamento to Fondazione El.B.A.Nicolini; Proteomics and Cell Cycle (FIRB RBIN04RXHS) and Nanobiosensors (FIRB ITALNANONET RBPR05JH2P_003), both to Claudio Nicolini University of Genova.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Nicolini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spera, R., Nicolini, C. CHO Proteome Alterations Induced by Reverse Transformation. Cell Biochem Biophys 61, 731–737 (2011). https://doi.org/10.1007/s12013-011-9243-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-011-9243-z

Keywords

Navigation