Log in

Blockade of ZFX Alleviates Hypoxia-Induced Pulmonary Vascular Remodeling by Regulating the YAP Signaling

  • Research
  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

High expression of the zinc finger X-chromosomal protein (ZFX) correlates with proliferation, aggressiveness, and development in many types of cancers. In the current report, we investigated the efficacy of ZFX in mouse pulmonary artery smooth muscle cells (PASMCs) proliferation during pulmonary arterial hypertension (PAH). PASMCs were cultured in hypoxic conditions. Real-time PCR and western blotting were conducted to detect the expression of ZFX. Cell proliferation, apoptosis, migration, and invasion were, respectively, measured by CCK-8, flow cytometry, wound scratchy, and transwell assays. Glycolytic ability was validated by the extracellular acidification rate and oxygen consumption rate. Transcriptome sequencing technology was used to explore the genes affected by ZFX knockdown. Luciferase and chromatin immunoprecipitation assays were utilized to verify the possible binding site of ZFX and YAP1. Mice were subjected to hypoxia for 21 days to induce PAH. The right ventricular systolic pressure (RVSP) was measured and ratio of RV/LV + S was calculated. The results show that ZFX was increased in hypoxia-induced PASMCs and mice. ZFX knockdown inhibited the proliferation, migration, and invasion of PASMC. Using RNA sequencing, we identify glycolysis and YAP as a key signaling of ZFX. ZFX knockdown inhibited Glycolytic ability. ZFX strengthened the transcription activity of YAP1, thereby regulating the YAP signaling. YAP1 overexpression reversed the effect of ZFX knockdown on hypoxia-treated PASMCs. In conclusion, ZFX knockdown protected mice from hypoxia-induced PAH injury. ZFX knockdown dramatically reduced RVSP and RV/(LV + S) in hypoxia-treated mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Luna-López, R., Ruiz Martín, A., & Escribano Subías, P. (2022). Pulmonary arterial hypertension. Medicina Clinica, 158(12), 622–629.

    Article  PubMed  Google Scholar 

  2. Pascall, E., & Tulloh, R. M. (2018). Pulmonary hypertension in congenital heart disease. Future Cardiology, 14(4), 343–353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chiu, Y. W., & Huang, W. C. (2022). Cardiopulmonary exercise test and rehabilitation for pulmonary hypertension patients. Acta Cardiologica Sinica, 38(6), 663–666.

    PubMed  PubMed Central  Google Scholar 

  4. Yang, D., Ma, X., Xu, J., Jia, K., Liu, X., & Zhang, P. (2021). Zfx-induced upregulation of UBE2J1 facilitates endometrial cancer progression via PI3K/AKT pathway. Cancer Biology & Therapy, 22(3), 238–247.

    Article  CAS  Google Scholar 

  5. Zhou, Y., Su, Z., Huang, Y., Sun, T., Chen, S., Wu, T., Chen, G., **e, X., Li, B., & Du, Z. (2011). The Zfx gene is expressed in human gliomas and is important in the proliferation and apoptosis of the human malignant glioma cell line U251. Journal of Experimental & Clinical Cancer Research, 30(1), 1756–9966.

    Article  Google Scholar 

  6. Song, X., Zhu, M., Zhang, F., Zhang, Y., Hu, Y., Jiang, L., Hao, Y., Chen, S., Zhu, Q., Huang, W., Lu, J., Gu, J., Gong, W., Li, M., & Liu, Y. (2018). ZFX promotes proliferation and metastasis of pancreatic cancer cells via the MAPK pathway. Cellular Physiology and Biochemistry, 48(1), 274–284.

    Article  CAS  PubMed  Google Scholar 

  7. Pourkeramati, F., Asadi, M. H., Shakeri, S., & Farsinejad, A. (2019). Differential expression profile of zfx variants discriminates breast cancer subtypes. Iran Biomedical Journal, 23(1), 47–56.

    PubMed  Google Scholar 

  8. Li, K., Zhu, Z. C., Liu, Y. J., Liu, J. W., Wang, H. T., **ong, Z. Q., Shen, X., Hu, Z. L., & Zheng, J. (2013). ZFX knockdown inhibits growth and migration of non-small cell lung carcinoma cell line H1299. International Journal of Clinical and Experimental Pathology, 6(11), 2460–2467.

    PubMed  PubMed Central  Google Scholar 

  9. Xu, W., Janocha, A. J., & Erzurum, S. C. (2021). Metabolism in pulmonary hypertension. Annual Review of Physiology, 83, 551–576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhao, L., Ashek, A., Wang, L., Fang, W., Dabral, S., Dubois, O., Cupitt, J., Pullamsetti, S. S., Cotroneo, E., Jones, H., Tomasi, G., Nguyen, Q. D., Aboagye, E. O., El-Bahrawy, M. A., Barnes, G., Howard, L. S., Gibbs, J. S., Gsell, W., He, J. G., & Wilkins, M. R. (2013). Heterogeneity in lung (18)FDG uptake in pulmonary arterial hypertension: Potential of dynamic (18)FDG positron emission tomography with kinetic analysis as a bridging biomarker for pulmonary vascular remodeling targeted treatments. Circulation, 128(11), 1214–1224.

    Article  CAS  PubMed  Google Scholar 

  11. Ma, C., Wang, X., He, S., Zhang, L., Bai, J., Qu, L., Qi, J., Zheng, X., Zhu, X., Mei, J., Guan, X., Yuan, H., & Zhu, D. (2022). Ubiquitinated AIF is a major mediator of hypoxia-induced mitochondrial dysfunction and pulmonary artery smooth muscle cell proliferation. Cell & Bioscience, 12(1), 022–00744.

    Article  Google Scholar 

  12. Kovacs, L., Cao, Y., Han, W., Meadows, L., Kovacs-Kasa, A., Kondrikov, D., Verin, A. D., Barman, S. A., Dong, Z., Huo, Y., & Su, Y. (2019). PFKFB3 in smooth muscle promotes vascular remodeling in pulmonary arterial hypertension. American Journal of Respiratory and Critical Care Medicine, 200(5), 617–627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tang, W., Li, M., Yangzhong, X., Zhang, X., Zu, A., Hou, Y., Li, L., & Sun, S. (2022). Hippo signaling pathway and respiratory diseases. Cell Death Discovery, 8(1), 022–01020.

    Article  Google Scholar 

  14. Koo, J. H., & Guan, K. L. (2018). Interplay between YAP/TAZ and Metabolism. Cell Metabolism, 28(2), 196–206.

    Article  CAS  PubMed  Google Scholar 

  15. Nguyen, C. D. K., & Yi, C. (2019). YAP/TAZ signaling and resistance to cancer therapy. Trends Cancer, 5(5), 283–296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dieffenbach, P. B., Haeger, C. M., Coronata, A. M. F., Choi, K. M., Varelas, X., Tschumperlin, D. J., & Fredenburgh, L. E. (2017). Arterial stiffness induces remodeling phenotypes in pulmonary artery smooth muscle cells via YAP/TAZ-mediated repression of cyclooxygenase-2. American Journal of Physiology-Lung Cellular and Molecular Physiology, 313(3), L628–L647.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Dieffenbach, P. B., Mallarino Haeger, C., Rehman, R., Corcoran, A. M., Coronata, A. M. F., Vellarikkal, S. K., Chrobak, I., Waxman, A. B., Vitali, S. H., Sholl, L. M., Padera, R. F., Lagares, D., Polverino, F., Owen, C. A., & Fredenburgh, L. E. (2021). A novel protective role for matrix metalloproteinase-8 in the pulmonary vasculature. American Journal of Respiratory and Critical Care Medicine, 204(12), 1433–1451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dumitru, A. M. G., & Compton, D. A. (2022). Identifying cyclin A/Cdk1 substrates in mitosis in human cells. Methods in Molecular Biology (Clifton, N.J.), 2415, 175–182.

    Article  CAS  PubMed  Google Scholar 

  19. Jayaraman, S., Pazhani, J., PriyaVeeraraghavan, V., Raj, A. T., Somasundaram, D. B., & Patil, S. (2022). PCNA and Ki67: Prognostic proliferation markers for oral cancer. Oral Oncology, 130, 105943. https://doi.org/10.1016/j.oraloncology.2022.105943. Epub 2022 May 30.

    Article  CAS  PubMed  Google Scholar 

  20. Vargová, V., Pytliak, M., & Mechírová, V. (2012). Matrix metalloproteinases. Experientia Supplementum, 103, 1–33.

    Article  PubMed  Google Scholar 

  21. Yang, F., Ma, H., Feng, L., Lian, M., Wang, R., Fan, E., & Fang, J. (2015). Zinc finger protein x-linked (ZFX) contributes to patient prognosis, cell proliferation and apoptosis in human laryngeal squamous cell carcinoma. International Journal of Clinical and Experimental Pathology, 8(11), 13886–13899.

    PubMed  PubMed Central  Google Scholar 

  22. Wu, J., Wei, B., Wang, Q., Ding, Y., Deng, Z., Lu, X., & Li, Y. (2016). ZFX facilitates cell proliferation and Imatinib resistance in chronic myeloid leukemia cells. Cell Biochemistry and Biophysics, 74(2), 277–283.

    Article  CAS  PubMed  Google Scholar 

  23. Smith-Raska, M. R., Arenzana, T. L., D’Cruz, L. M., Khodadadi-Jamayran, A., Tsirigos, A., Goldrath, A. W., & Reizis, B. (2018). The transcription factor Zfx regulates peripheral T cell self-renewal and proliferation. Frontiers in Immunology. https://doi.org/10.3389/fimmu.2018.01482

    Article  PubMed  PubMed Central  Google Scholar 

  24. Feng, X., Zhou, S., Cai, W., & Guo, J. (2020). The miR-93-3p/ZFP36L1/ZFX axis regulates keratinocyte proliferation and migration during skin wound healing. Molecular Therapy-Nucleic Acids, 23, 450–463.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gavet, O., & Pines, J. (2010). Progressive activation of CyclinB1-Cdk1 coordinates entry to mitosis. Developmental Cell, 18(4), 533–543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li, Y. X., Run, L., Shi, T., & Zhang, Y. J. (2017). CTRP9 regulates hypoxia-mediated human pulmonary artery smooth muscle cell proliferation, apoptosis and migration via TGF-β1/ERK1/2 signaling pathway. Biochemical and Biophysical Research Communications, 490(4), 1319–1325.

    Article  CAS  PubMed  Google Scholar 

  27. Weng, H., Wang, X., Li, M., Wu, X., Wang, Z., Wu, W., Zhang, Z., Zhang, Y., Zhao, S., Liu, S., Mu, J., Cao, Y., Shu, Y., Bao, R., Zhou, J., Lu, J., Dong, P., Gu, J., & Liu, Y. (2015). Zinc finger X-chromosomal protein (ZFX) is a significant prognostic indicator and promotes cellular malignant potential in gallbladder cancer. Cancer Biology & Therapy, 16(10), 1462–1470.

    Article  CAS  Google Scholar 

  28. Yao, L., Chen, L., Zhou, H., Duan, F., Wang, L., & Zhang, Y. (2022). Long noncoding RNA NEAT1 promotes the progression of breast cancer by regulating miR-138-5p/ZFX axis. Cancer Biotherapy & Radiopharmaceuticals, 37(8), 636–649.

    Article  CAS  Google Scholar 

  29. Kuzuya, M., & Iguchi, A. (2003). Role of matrix metalloproteinases in vascular remodeling. Journal of Atherosclerosis and Thrombosis, 10(5), 275–282.

    Article  CAS  PubMed  Google Scholar 

  30. Wang, X. M., Shi, K., Li, J. J., Chen, T. T., Guo, Y. H., Liu, Y. L., Yang, Y. F., & Yang, S. (2015). Effects of angiotensin II intervention on MMP-2, MMP-9, TIMP-1, and collagen expression in rats with pulmonary hypertension. Genetics and Molecular Research, 14(1), 1707–1717.

    Article  CAS  PubMed  Google Scholar 

  31. Jiang, L., Zhou, T., & Liu, H. (2012). Combined effects of the ATP-sensitive potassium channel opener pinacidil and simvastatin on pulmonary vascular remodeling in rats with monocrotaline-induced pulmonary arterial hypertension. Die Pharmazie, 67(6), 547–552.

    CAS  PubMed  Google Scholar 

  32. Li, F., Wang, D., Wang, H., Chen, L., Sun, X., & Wan, Y. (2021). Inhibition of HDAC1 alleviates monocrotaline-induced pulmonary arterial remodeling through up-regulation of miR-34a. Respiratory Research, 22(1), 021–01832.

    Article  Google Scholar 

  33. Luo, L., **ao, L., Lian, G., Wang, H., & **e, L. (2020). miR-125a-5p inhibits glycolysis by targeting hexokinase-II to improve pulmonary arterial hypertension. Aging, 12(10), 9014–9030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang, Q., Li, W., Zhu, Y., Wang, Q., Zhai, C., Shi, W., Feng, W., Wang, J., Yan, X., Chai, L., Chen, Y., Li, C., Liu, P., & Li, M. (2021). Activation of AMPK inhibits Galectin-3-induced pulmonary artery smooth muscle cells proliferation by upregulating hippo signaling effector YAP. Molecular and Cellular Biochemistry, 476(8), 3037–3049.

    Article  CAS  PubMed  Google Scholar 

  35. Wang, Q., Shi, W., Zhang, Q., Feng, W., Wang, J., Zhai, C., Yan, X., & Li, M. (2020). Inhibition of Siah2 ubiquitin ligase ameliorates monocrotaline-induced pulmonary arterial remodeling through inactivation of YAP. Life Sciences, 242(117159), 11.

    Google Scholar 

  36. Bertero, T., Cottrill, K. A., Lu, Y., Haeger, C. M., Dieffenbach, P., Annis, S., Hale, A., Bhat, B., Kaimal, V., Zhang, Y. Y., Graham, B. B., Kumar, R., Saggar, R., Wallace, W. D., Ross, D. J., Black, S. M., Fratz, S., Fineman, J. R., Vargas, S. O., … Chan, S. Y. (2015). Matrix remodeling promotes pulmonary hypertension through feedback mechanoactivation of the YAP/TAZ-miR-130/301 circuit. Cell Reports, 13(5), 1016–1032.

    Article  CAS  PubMed  Google Scholar 

  37. Liu, H., Zhang, S., Liu, Y., Ma, J., Chen, W., Yin, T., Li, T., Liang, B., & Tao, L. (2022). Knockdown of HSP110 attenuates hypoxia-induced pulmonary hypertension in mice through suppression of YAP/TAZ-TEAD4 pathway. Respiratory Research, 23(1), 022–02124.

    Article  CAS  Google Scholar 

  38. Enzo, E., Santinon, G., Pocaterra, A., Aragona, M., Bresolin, S., Forcato, M., Grifoni, D., Pession, A., Zanconato, F., Guzzo, G., Bicciato, S., & Dupont, S. (2015). Aerobic glycolysis tunes YAP/TAZ transcriptional activity. EMBO Journal, 34(10), 1349–1370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rhie, S. K., Yao, L., Luo, Z., Witt, H., Schreiner, S., Guo, Y., Perez, A. A., & Farnham, P. J. (2018). ZFX acts as a transcriptional activator in multiple types of human tumors by binding downstream of transcription start sites at the majority of CpG island promoters. Genome Research, 28(3), 310–320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not Applicable.

Funding

Medical and Health Science and Technology Development Plan of Shandong Province in 2020 (No. 202006011224) The Second batch of Science and Technology Plan Projects of **an Municipal Health Commission in 2020 (No. 2020-3-03).

Author information

Authors and Affiliations

Authors

Contributions

LT designed the study; LT, XZ and ALG performed the research; LZH and SLP analyzed data; LT wrote the paper. All authors have read and approved the manuscript.

Corresponding authors

Correspondence to Lizhang Han or Silin Pan.

Ethics declarations

Competing interest

The authors declare that they have no conflicts of interest.

Ethical Approval

The experimental protocol of our study was performed in accordance with the Guide for the Care and Use of Laboratory Animals and approved by **an Central Hospital Ethics committee.

Additional information

Handling Editor: Daniel Conklin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, L., Zhou, X., Guo, A. et al. Blockade of ZFX Alleviates Hypoxia-Induced Pulmonary Vascular Remodeling by Regulating the YAP Signaling. Cardiovasc Toxicol 24, 158–170 (2024). https://doi.org/10.1007/s12012-023-09822-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-023-09822-5

Keywords

Navigation