Log in

Dietary Serine and Sulfate-Containing Amino Acids Related to the Nutritional Status of Selenium in Lactating Chinese Women

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Previous studies suggested that serine can promote the synthesis of selenoproteins and the interaction, transformation, and replacement of serine, cysteine, and selenocysteine have been observed in the human body. This study was designed to clarify whether the dietary intakes of serine and sulfate-containing amino acids (SAAs) could directly affect the selenium (Se) nutritional status or the level of milk Se in lactating women. Breast milk and plasma samples were collected from a total of 264 lactating Chinese women when they revisited their local hospital at the 42nd day postpartum to detect the concentration of Se with ICP-MS and the content of selenoprotein P (SEPP1) and the activity of glutathione peroxidase 3 (GPX3) in the plasma by ELISA. The daily Se intake by each subject was calculated based on her own plasma Se concentration. The 24-h dietary record data for 3 consecutive days were collected to calculate their dietary intakes of protein together with each amino acid daily based on the China Food Composition Tables (CFCT). Ordinal polytomous logistic regression was applied to examine the determinants of BMI values for lactating women. For all subjects, the concentration of plasma SEPP1 and milk Se of participants with insufficient Se intake were significantly associated with the dietary intake of serine and 2 SAAs (methionine and cystine), respectively (P < 0.05). No significant correlation was found between each amino acid related to the synthesis of endogenous serine and every biomarker of the Se nutrition status in subjects with an insufficient dietary protein intake (P > 0.05). The ordinal logistic regression analysis showed that dietary protein intake (ordinal OR 1.012, 95% CI = 0.004–0.020, P = 0.002) and plasma SEPP1 (ordinal OR 0.988, 95% CI = − 0.023 to − 0.001, P = 0.036) affected the BMI value together in these lactating women. In conclusion, dietary serine and SAAs were found to directly affect the nutritional status, and both high protein intake and low plasma SEPP1 might be the health risks in these lactating Chinese women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Abbas MN, Liang H, Kausar S, Dong Z, Cui H (2020) Zinc finger protein RP-8, the Bombyx mori ortholog of programmed cell death 2, regulates cell proliferation. Dev Comp Immunol 104:103542. https://doi.org/10.1016/j.dci.2019.103542

    Article  CAS  PubMed  Google Scholar 

  2. Nguyen LH, Tran TT, Truong LTN, Mai HH, Nguyen TT (2020) Overcharging of the zinc ion in the structure of the zinc-finger protein is needed for DNA binding stability. Biochemistry. 59:1378–1390. https://doi.org/10.1021/acs.biochem.9b01055

    Article  CAS  PubMed  Google Scholar 

  3. Laleve A, Panozzo C, Kühl I, Bourand-Plantefol A, Ostojic J, Sissoko A, Tribouillard-Tanvier D, Cornu D, Burg A, Meunier B, Blondel M, Clain J, Bonnefoy N, Duval R, Dujardin G (2020) Artemisinin and its derivatives target mitochondrial c-type cytochromes in yeast and human cells. Biochim Biophys Acta Mol Cell Res 1867:118661. https://doi.org/10.1016/j.bbamcr.2020.118661

    Article  CAS  PubMed  Google Scholar 

  4. Ge K, Xue A, Bai J, Wang S (1983) Keshan disease-an endemic cardiomyopathy in China. Virchows Arch A Pathol Anat Histopathol 401(1):1–15. https://doi.org/10.1007/bf00644785

    Article  CAS  PubMed  Google Scholar 

  5. Chen J (2012) An original discovery: selenium deficiency and Keshan disease (an endemic heart disease). Asia Pac J Clin Nutr 21(3):320–326

    PubMed  Google Scholar 

  6. Loscalzo J (2014) Keshan disease, selenium deficiency, and the selenoproteome. N Engl J Med 370(18):1756–1760. https://doi.org/10.1056/NEJMcibr1402199

    Article  CAS  PubMed  Google Scholar 

  7. Wang K, Yu J, Liu H, Liu Y, Liu N, Cao Y, Zhang X, Sun D (2019) Endemic Kashin-Beck disease: a food-sourced osteoarthropathy. Semin Arthritis Rheum 50:366–372. https://doi.org/10.1016/j.semarthrit.2019.07.014

    Article  CAS  PubMed  Google Scholar 

  8. **e D, Liao Y, Yue J, Zhang C, Wang Y, Deng C, Chen L (2018) Effects of five types of selenium supplementation for treatment of Kashin-Beck disease in children: a systematic review and network meta-analysis. BMJ Open 8:e017883. https://doi.org/10.1136/bmjopen-2017-017883

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wang L, Shi X, Zheng S, Xu S (2020) Selenium deficiency exacerbates LPS-induced necroptosis by regulating miR-16-5p targeting PI3K in chicken tracheal tissue. Metallomics. 12:562–571. https://doi.org/10.1039/c9mt00302a

    Article  CAS  PubMed  Google Scholar 

  10. Liu J, Wang S, Zhang Q, Li X, Xu S (2020) Selenomethionine alleviates LPS-induced chicken myocardial inflammation by regulating the miR-128-3p-p38 MAPK axis and oxidative stress. Metallomics 12(1):54–64. https://doi.org/10.1039/c9mt00216b

    Article  CAS  PubMed  Google Scholar 

  11. Serrão VHB, Scortecci JF (2020) Why selenocysteine is unique? Front Mol Biosci 7. https://doi.org/10.3389/fmolb.2020.00002

  12. Saito Y (2020) Selenoprotein P as an in vivo redox regulator: disorders related to its deficiency and excess. J Clin Biochem Nutr 66(1):1–7. https://doi.org/10.3164/jcbn.19-31

    Article  CAS  PubMed  Google Scholar 

  13. Gonzalez-Flores JN, Shetty SP, Dubey A, Copeland PR (2013) The molecular biology of selenocysteine. Biomol Concepts 4(4):349–365. https://doi.org/10.1515/bmc-2013-0007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bubenik JL, Miniard AC, Driscoll DM (2014) Characterization of the UGA-recoding and SECIS-binding activities of SECIS-binding protein 2. RNA Biol 11(11):1402–1413. https://doi.org/10.1080/15476286.2014.996472

    Article  PubMed  Google Scholar 

  15. Simonović M, Puppala AK (2018) On elongation factor eEFSec, its role and mechanism during selenium incorporation into nascent selenoproteins. Biochim Biophys Acta Gen Subj 1862:2463–2472. https://doi.org/10.1016/j.bbagen.2018.03.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kigawa T, Yamaguchi-Nunokawa E, Kodama K, Matsuda T, Yabuki T, Matsuda N, Ishitani R, Nureki O, Yokoyama S (2002) Selenomethionine incorporation into a protein by cell-free synthesis. J Struct Funct Genomics 2(1):29–35. https://doi.org/10.1023/a:1013203532303

    Article  CAS  PubMed  Google Scholar 

  17. Barton WA, Tzvetkova-Robev D, Erdjument-Bromage H, Tempst P, Nikolov DB (2006) Highly efficient selenomethionine labeling of recombinant proteins produced in mammalian cells. Protein Sci 15(8):2008–2013. https://doi.org/10.1110/ps.062244206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fukada S, Shimada Y, Morita T, Sugiyama K (2006) Suppression of methionine-induced hyperhomocysteinemia by glycine and serine in rats. Biosci Biotechnol Biochem 70(10):2403–2409. https://doi.org/10.1271/bbb.60130

    Article  CAS  PubMed  Google Scholar 

  19. Ohuchi S, Matsumoto Y, Morita T, Sugiyama K (2008) High-casein diet suppresses guanidinoacetic acid-induced hyperhomocysteinemia and potentiates the hypohomocysteinemic effect of serine in rats. Biosci Biotechnol Biochem 72(12):3258–3264. https://doi.org/10.1271/bbb.80543

    Article  CAS  PubMed  Google Scholar 

  20. Liu YQ, Liu Y, Morita T, Sugiyama K (2011) Methionine and serine synergistically suppress hyperhomocysteinemia induced by choline deficiency, but not by guanidinoacetic acid, in rats fed a low casein diet. Biosci Biotechnol Biochem 75(12):2333–2339. https://doi.org/10.1271/bbb.110507

    Article  CAS  PubMed  Google Scholar 

  21. Zhou X, He L, Wu C, Zhang Y, Wu X, Yin Y (2017) Serine alleviates oxidative stress via supporting glutathione synthesis and methionine cycle in mice. MolNutr Food Res 61. https://doi.org/10.1002/mnfr.201700262

  22. He LQ, Zhang HW, Zhou XH (2018) Weanling offspring of dams maintained on serine-deficient diet are vulnerable to oxidative stress. Oxidative Med Cell Longev 2018:1–10. https://doi.org/10.1155/2018/8026496

    Article  CAS  Google Scholar 

  23. Zhou XH, Zhang HW, He LQ, Wu X, Yin YL (2018) Long-term L-serine administration reduces food intake and improves oxidative stress and Sirt1/NFκB signaling in the hypothalamus of aging mice. Front Endocrinol (Lausanne) 9. https://doi.org/10.3389/fendo.2018.00476

  24. Wu XQ, Gross HJ (1993) The long extra arms of human tRNA((Ser)Sec) and tRNA(Ser) function as major identify elements for serylation in an orientation-dependent, but not sequence-specific manner. Nucleic Acids Res 21:5589–5594. https://doi.org/10.1093/nar/21.24.5589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ohama T, Yang DC, Hatfield DL (1994) Selenocysteine tRNA and serine tRNA are aminoacylated by the same synthetase, but may manifest different identities with respect to the long extra arm. ArchBiochem Biophys 315:293–301. https://doi.org/10.1006/abbi.1994.1503

    Article  CAS  Google Scholar 

  26. Amberg R, Mizutani T, Wu XQ, Gross HJ (1996) Selenocysteine synthesis in Mammalia: an identity switch from tRNA(Ser) to tRNA(Sec). J Mol Biol 263:8–19. https://doi.org/10.1006/jmbi.1996.0552

    Article  CAS  PubMed  Google Scholar 

  27. Morrison DG, Dishart MK, Medina D (1988) Serine and methionine enhancement of selenite inhibition of DNA synthesis in a mouse mammary epithelial cell line. Carcinogenesis 9(10):1811–1815. https://doi.org/10.1093/carcin/9.10.1811

    Article  CAS  PubMed  Google Scholar 

  28. Wang Q, Sun LC, Liu YQ, Liu JX, Han F, Huang ZW (2016) The synergistic effect of serine with selenocompounds on the expression of SelP and GPx in HepG2 cells. Biol Trace Elem Res 173:291–296. https://doi.org/10.1007/s12011-016-0665-8

    Article  CAS  PubMed  Google Scholar 

  29. Maddocks OD, Labuschagne CF, Adams PD, Vousden KH (2016) Serine metabolism supports the methionine cycle and DNA/RNA methylation through de novo ATP synthesis in cancer cells. Mol Cell 61(2):210–221. https://doi.org/10.1016/j.molcel.2015.12.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ning YJ, Wang X, Ren L, Guo X (2013) Effects of dietary factors on selenium levels of children to prevent Kashin-Beck disease during a high-prevalence period in an endemic area: a cohort study. Biol Trace Elem Res 153:58–68. https://doi.org/10.1007/s12011-013-9651-6

    Article  CAS  PubMed  Google Scholar 

  31. Ning YJ, Wang X, Wang S, Zhang F, Zhang L, Lei Y, Guo X (2015) Is it the appropriate time to stop applying selenium enriched salt in Kashin-Beck disease areas in China? Nutrients 7(8):6195–6212. https://doi.org/10.3390/nu7085276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Han F, Liu LP, Lu JX, Chai YJ, Zhang J, Wang SJ, Sun LC, Wang Q, Liu YQ, He MJ, Mu WP, Huang ZW (2019) Calculation of an adequate intake (AI) value and safe range of selenium (se) for Chinese infants 0–3 months old based on se concentration in the milk of lactating Chinese women with optimal Se intake. Biol Trace Elem Res 188(2):363–372. https://doi.org/10.1007/s12011-018-1440-9

    Article  CAS  PubMed  Google Scholar 

  33. Yang G, Yin S, Zhou R, Gu L, Yan B, Liu Y (1989) Studies of safe maximal daily dietary Se-intake in a seleniferous area in China. Part II: relation between Se-intake and the manifestation of clinical signs and certain biochemical alterations in blood and urine. J Trace Elem Electrolytes Health Dis 3:123–130

    CAS  PubMed  Google Scholar 

  34. Yang YX (2018) China food composition tables, 6th edn. Peking University Medical Press, Bei**g

    Google Scholar 

  35. Chinese Nutrition Society (2014) Chinese dietary reference intakes (DRIs). Science Press, Bei**g

    Google Scholar 

  36. White L, Romagné F, Müller E, Erlebach E, Weihmann A, Parra G, Andrés AM, Castellano S (2015) Genetic adaptation to levels of dietary selenium in recent human history. Mol Biol Evol 32(6):1507–1518. https://doi.org/10.1093/molbev/msv043

    Article  CAS  PubMed  Google Scholar 

  37. Duan YF, Jiang S, Wang J, Zhao LY, Pang XH, Bi Y, Yin SA, Yang ZY (2016) Dietary intake status of Chinese lactating women during the first month postpartum in 2013. Chi J Prev Med 50(12):1043–1049 (in Chinese)

    CAS  Google Scholar 

  38. Kim S, Gray HL, Li J, Park H, Lee Y, Song K (2019) A comparative study on nutritional knowledge and dietary behavior between Korean and Chinese postpartum women. Nutr Res Pract 13(6):535–542. https://doi.org/10.4162/nrp.2019.13.6.535

    Article  PubMed  PubMed Central  Google Scholar 

  39. Spencer L, Rollo M, Hauck Y, MacDonald-Wicks L, Wood L, Hutchesson M, Giglia R, Smith R, Collins C (2015) The effect of weight management interventions that include a diet component on weight-related outcomes in pregnant and postpartum women: a systematic review protocol. JBI Database System Rev Implement Rep 13(1):88–98. https://doi.org/10.11124/jbisrir-2015-1812

    Article  PubMed  Google Scholar 

  40. Castañeda-Ovando A, Segovia-Cruz JA, Flores-Aguilar JF, Rodríguez-Serrano GM, Salazar-Pereda V, Ramírez-Godínez J, Contreras-López E, Jaimez-Ordaz J, González-Olivares LG (2019) Serine-enriched minimal medium enhances conversion of selenium into selenocysteine by Streptococcus thermophilus. J Dairy Sci 102(8):6781–6789. https://doi.org/10.3168/jds.2019-16365

    Article  CAS  PubMed  Google Scholar 

  41. Hill KE, Motley AK, Winfrey VP, Burk RF (2014) Selenoprotein P is the major selenium transport protein in mouse milk. PLoS One 9. https://doi.org/10.1371/journal.pone.0103486

  42. Waschulewski IH, Sunde RA (1988) Effect of dietary methionine on tissue selenium and glutathione peroxidase (EC 1.11.1.9) activity in rats given selenomethionine. Br J Nutr 60(1):57–68. https://doi.org/10.1079/bjn19880076

    Article  CAS  PubMed  Google Scholar 

  43. Waschulewski IH, Sunde RA (1988) Effect of dietary methionine on utilization of tissue selenium from dietary selenomethionine for glutathione peroxidase in the rat. J Nutr 118(3):367–374. https://doi.org/10.1093/jn/118.3.367

    Article  CAS  PubMed  Google Scholar 

  44. Sunde RA, Gutzke GE, Hoekstra WG (1981) Effect of dietary methionine on the biopotency of selenite and selenomethionine in the rat. J Nutr 111(1):76–88. https://doi.org/10.1093/jn/111.1.76

    Article  CAS  PubMed  Google Scholar 

  45. Turanov AA, Xu XM, Carlson BA, Yoo MH, Gladyshev VN, Hatfield DL (2011) Biosynthesis of selenocysteine, the 21st amino acid in the genetic code, and a novel pathway for cysteine biosynthesis. Adv Nutr 2(2):122–128. https://doi.org/10.3945/an.110.000265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Xu XM, Turanov AA, Carlson BA, Yoo MH, Everley RA, Nandakumar R, Sorokina I, Gygi SP, Gladyshev VN, Hatfield DL (2010) Targeted insertion of cysteine by decoding UGA codons with mammalian selenocysteine machinery. Proc Natl Acad Sci U S A 107:21430–21434. https://doi.org/10.1073/pnas.1009947107

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ingold I, Berndt C, Schmitt S, Doll S, Poschmann G, Buday K, Roveri A, Peng X, Porto Freitas F, Seibt T, Mehr L, Aichler M, Walch A, Lamp D, Jastroch M, Miyamoto S, Wurst W, Ursini F, ESJ A, Fradejas-Villar N, Schweizer U, Zischka H, Friedmann Angeli JP, Conrad M (2018) Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis. Cell 172(3):409–422. https://doi.org/10.1016/j.cell.2017.11.048

    Article  CAS  PubMed  Google Scholar 

  48. Turanov AA, Everley RA, Hybsier S, Renko K, Schomburg L, Gygi SP, Hatfield DL, Gladyshev VN (2015) Regulation of selenocysteine content of human selenoprotein P by dietary selenium and insertion of cysteine in place of selenocysteine. PLoS One 10:e0140353. https://doi.org/10.1371/journal.pone.0140353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Burk RF, Hill KE (2015) Regulation of selenium metabolism and transport. Annu Rev 35:17.1–17.26. https://doi.org/10.1146/annurev-nutr-071714-034250

    Article  CAS  Google Scholar 

  50. Larvie DY, Doherty JL, Donati GL, Armah SM (2019) Relationship between selenium and hematological markers in young adults with normal weight or overweight/obesity. Antioxidants (Basel) 8. https://doi.org/10.3390/antiox8100463

  51. Chen MX, Liu B, Wilkinson D, Hutchison AT, Thompson CH, Wittert GA, Heilbronn LK (2017) Selenoprotein P is elevated in individuals with obesity, but is not independently associated with insulin resistance. Obes Res Clin Pract 11(2):227–232. https://doi.org/10.1016/j.orcp.2016.07.004

    Article  PubMed  Google Scholar 

  52. Mao JY, Bath SC, Vanderlelie JJ, Perkins AV, Redman CW, Rayman MP (2016) No effect of modest selenium supplementation on insulin resistance in UK pregnant women, as assessed by plasma adiponectin concentration. Br J Nutr 115:32–38. https://doi.org/10.1017/S0007114515004067

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Chinese Nutrition Society Nutrition Scientific Research Funds − Yili Nutrition and Health Research Fund (No. 2013-013) and the National Natural Science Foundation of China under the Grant No. 81973048, 81741032, and 81372989. F.H., H.Y.W., and Z.W.H. designed research; F.H., L.P.L, Y.J.C., J.Z., and S.J.W. conducted research; F.H., X.H.P., L.C.S., Q.W., Y.Q.L., and S.Z. analyzed data; F.H. and Z.W.H. wrote the paper; Z.W.H. had primary responsibility for final content. All of the authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongying Wu or Zhenwu Huang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, F., Pang, X., Wang, Q. et al. Dietary Serine and Sulfate-Containing Amino Acids Related to the Nutritional Status of Selenium in Lactating Chinese Women. Biol Trace Elem Res 199, 829–841 (2021). https://doi.org/10.1007/s12011-020-02204-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02204-w

Keywords

Navigation