Log in

Investigation of In Vitro Anti-cancer and Apoptotic Potential of Onion-Derived Nanovesicles Against Prostate and Cervical Cancer Cell Lines

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Plant-derived compounds have recently garnered significant interest in the field of medicine due to their rich repertoire of phytochemicals, which holds promise for exploring novel therapies to treat cancer. This study embarks on the first-time investigation of the anti-cancerous effect of onion-derived nanovesicles (ODNVs). ODNVs were isolated employing differential centrifugation followed by ultracentrifugation and subsequent characterization using dynamic light scattering (DLS), field emission scanning electron microscopy (FESEM), and Fourier transform infrared spectroscopy (FTIR). Furthermore, we delineated the anti-cancerous effect of ODNVs on two cancer cell line models HeLa (cervical cancer) and PC-3 (prostate cancer) using MTT assay, DAPI-based DNA damage using immunofluorescence microscopy, colony formation assay, migration assay, cell cycle analysis, and evaluation of apoptosis using flow cytometry and western blotting. The findings revealed dose- and time-dependent anti-proliferative effects of ODNVs on both HeLa and PC3 cell lines, accompanied by selective cytotoxicity against cancer cells. Additional results highlighted that ODNVs prevented colony growth and induced S-phase cell cycle arrest. Apoptosis induction was evaluated through alterations in nuclear morphology and the number of apoptotic cells, which increased significantly after ODNV treatment in both cancer cell lines. Furthermore, annexin V/PI staining evaluation of apoptotic cells by flow cytometry demonstrated that ODNV treatment significantly increased the number of apoptotic cells in both PC-3 and HeLa cells. Finally, Western blot analysis indicated changes in apoptosis-related proteins including bcl-2, bax, and caspase-3, emphasizing that the anti-cancerous effect of ODNVs is attributed to the induction of apoptosis and suggests the  unexplored anti-cancerous potential of ODNVs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The authors declared that data is available within the manuscript.

References

  1. Al-Fayez, S., & El-Metwally, A. (2023). Cigarette smoking and prostate cancer: A systematic review and meta-analysis of prospective cohort studies. Tobacco Induced Diseases, 21, 19.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Asemani, Y., Zamani, N., Bayat, M., & Amirghofran, Z. (2019). Allium vegetables for possible future of cancer treatment. Phytotherapy Research, 33(12), 3019–3039.

    Article  PubMed  Google Scholar 

  3. Atale, N., Gupta, S., Yadav, U. C. S., & Rani, V. (2014). Cell-death assessment by fluorescent and nonfluorescent cytosolic and nuclear staining techniques. Journal of Microscopy, 255(1), 7–19.

    Article  CAS  PubMed  Google Scholar 

  4. Baddela, V. S., Nayan, V., Rani, P., Onteru, S. K., & Singh, D. (2016). Physicochemical biomolecular insights into buffalo milk-derived nanovesicles. Applied Biochemistry and Biotechnology, 178, 554–557.

  5. Bainor, A., Chang, L., McQuade, T. J., Webb, B., & Gestwicki, J. E. (2011). Bicinchoninic acid (BCA) assay in low volume. Analytical Biochemistry, 410(2), 310–312.

    Article  CAS  PubMed  Google Scholar 

  6. Berenguer, C. V., Pereira, F., Câmara, J. S., & Pereira, J. A. M. (2023). Underlying features of prostate Cancer—Statistics, risk factors, and emerging methods for its diagnosis. Current Oncology, 30(2), 2300–2321.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bhattacharyya, S., Sen, P., Wallet, M., Long, B., Baldwin, A. S., Jr., & Tisch, R. (2004). Immunoregulation of dendritic cells by IL-10 is mediated through suppression of the PI3K/Akt pathway and of IκB kinase activity. Blood, 104(4), 1100–1109.

    Article  CAS  PubMed  Google Scholar 

  8. Carneiro, B. A., & El-Deiry, W. S. (2020). Targeting apoptosis in cancer therapy. Nature Reviews Clinical Oncology, 17(7), 395–417.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chen, L., Zhang, X., Chen, J., Zhang, X., Fan, H., Li, S., & **e, P. (2014). NF-κB plays a key role in microcystin-RR-induced HeLa cell proliferation and apoptosis. Toxicon, 87, 120–130.

    Article  CAS  PubMed  Google Scholar 

  10. Chen, Q., Li, Q., Liang, Y., Zu, M., Chen, N., Canup, B. S. B., Luo, L., Wang, C., Zeng, L., & **ao, B. (2022). Natural exosome-like nanovesicles from edible tea flowers suppress metastatic breast cancer via ROS generation and microbiota modulation. Acta Pharmaceutica Sinica B, 12(2), 907–923.

    Article  PubMed  Google Scholar 

  11. Chen, T., Ma, B., Lu, S., Zeng, L., Wang, H., Shi, W., Zhou, L., **a, Y., Zhang, X., & Zhang, J. (2022). Cucumber-Derived Nanovesicles Containing Cucurbitacin B for Non-Small Cell Lung Cancer Therapy. International Journal of Nanomedicine, 17, 3583–3599.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chhabra, R. (2018). let-7i-5p, miR-181a-2-3p and EGF/PI3K/SOX2 axis coordinate to maintain cancer stem cell population in cervical cancer. Scientific Reports, 8(1), 1–9.

    Article  MathSciNet  CAS  Google Scholar 

  13. Cragg, G. M., & Pezzuto, J. M. (2016). Natural products as a vital source for the discovery of cancer chemotherapeutic and chemopreventive agents. Medical Principles and Practice, 25(Suppl. 2), 41–59.

    Article  PubMed  Google Scholar 

  14. Dickson, M. A., & Schwartz, G. K. (2009). Development of cell-cycle inhibitors for cancer therapy. Current Oncology, 16(2), 36–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dutta, S., Mahalanobish, S., Saha, S., Ghosh, S., & Sil, P. C. (2019). Natural products: An upcoming therapeutic approach to cancer. Food and Chemical Toxicology, 128, 240–255.

    Article  CAS  PubMed  Google Scholar 

  16. Gurib-Fakim, A. (2006). Medicinal plants: Traditions of yesterday and drugs of tomorrow. Molecular Aspects of Medicine, 27(1), 1–93.

    Article  CAS  PubMed  Google Scholar 

  17. Hamdi, Y., Abdeljaoued-Tej, I., Zatchi, A. A., Abdelhak, S., Boubaker, S., Brown, J. S., & Benkahla, A. (2021). Cancer in Africa: The untold story. Frontiers in Oncology, 11, 650117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Han, S. H., Lee, J. H., Woo, J. S., Jung, G. H., Jung, S. H., Han, E. J., Park, Y. S., Kim, B. S., Kim, S. K., & Park, B. K. (2022). Myricetin induces apoptosis through the MAPK pathway and regulates JNK–mediated autophagy in SK–BR–3 cells. International Journal of Molecular Medicine, 49(4), 1–11.

    Article  Google Scholar 

  19. Hsing, A. W., Chokkalingam, A. P., Gao, Y. T., Madigan, M. P., Deng, J., Gridley, G., & Fraumeni, J. F., Jr. (2002). Allium vegetables and risk of prostate cancer: a population-based study. Journal of the National Cancer Institute, 94(21), 1648–1651.

    Article  CAS  PubMed  Google Scholar 

  20. Ju, S., Mu, J., Dokland, T., Zhuang, X., Wang, Q., Jiang, H., Deng, Z., Wang, B., Zhang, L., Roth, M., Welti, R., Mobley, J., Jun, Y., Miller, D., & Zhang, H. (2013). Grape exosome-like nanoparticles induce intestinal stem cells and protect mice from DSS-induced colitis. Molecular Therapy, 21(7), 1345–1357. https://doi.org/10.1038/mt.2013.64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kaloni, D., Diepstraten, S. T., Strasser, A., & Kelly, G. L. (2023). BCL-2 protein family: Attractive targets for cancer therapy. Apoptosis, 28(1–2), 20–38.

    Article  CAS  PubMed  Google Scholar 

  22. Kang, S. J., Kim, S. E., Seo, M. J., Kim, E., & Rhee, W. J. (2022). Suppression of inflammatory responses in macrophages by onion-derived extracellular vesicles. Journal of Industrial and Engineering Chemistry, 115, 287–297.

    Article  ADS  CAS  Google Scholar 

  23. Kim, D. K., & Rhee, W. J. (2021). Antioxidative effects of carrot-derived nanovesicles in cardiomyoblast and neuroblastoma cells. Pharmaceutics, 13(8), 1203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kim, S. Q., & Kim, K. H. (2022). Emergence of edible plant-derived nanovesicles as functional food components and nanocarriers for therapeutics delivery: Potentials in human health and disease. Cells, 11(14), 2232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kumar, M., Barbhai, M. D., Hasan, M., Punia, S., Dhumal, S., Radha, Rais, N., Chandran, D., Pandiselvam, R., Kothakota, A., Tomar, M., Satankar, V., Senapathy, M., Anitha, T., Dey, A., Sayed, A. A. S., Gadallah, F. M., Amarowicz, R., & Mekhemar, M. (2022). Onion (Allium cepa L.) peels: A review on bioactive compounds and biomedical activities. Biomedicine & Pharmacotherapy, 146, 112498. https://doi.org/10.1016/j.biopha.2021.112498

    Article  CAS  Google Scholar 

  26. Li, S., & Tu, H. (2022). Psoralen inhibits the proliferation and promotes apoptosis through endoplasmic reticulum stress in human osteosarcoma cells. Folia Histochemica et Cytobiologica, 60(1), 101–109.

    Article  CAS  PubMed  Google Scholar 

  27. Li, X., Liang, Z., Du, J., Wang, Z., Mei, S., Li, Z., Zhao, Y., Zhao, D., Ma, Y., & Ye, J. (2019). Herbal decoctosome is a novel form of medicine. Science China Life Sciences, 62, 333–348.

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Liu, C., Yan, X., Zhang, Y., Yang, M., Ma, Y., Zhang, Y., Xu, Q., Tu, K., & Zhang, M. (2022). Oral administration of turmeric-derived exosome-like nanovesicles with anti-inflammatory and pro-resolving bioactions for murine colitis therapy. Journal of Nanobiotechnology, 20(1), 206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Luk, S. C. W., Siu, S. W. F., Lai, C. K., Wu, Y. J., & Pang, S. F. (2005). Cell cycle arrest by a natural product via G2/M checkpoint. International Journal of Medical Sciences, 2(2), 64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ly, N. P., Han, H. S., Kim, M., Park, J. H., & Choi, K. Y. (2023). Plant-derived nanovesicles: Current understanding and applications for cancer therapy. Bioactive Materials, 22, 365–383.

    Article  CAS  PubMed  Google Scholar 

  31. Majumder, M., Debnath, S., Gajbhiye, R. L., Saikia, R., Gogoi, B., Samanta, S. K., Das, D. K., Biswas, K., Jaisankar, P., & Mukhopadhyay, R. (2019). Ricinus communis L. fruit extract inhibits migration/invasion, induces apoptosis in breast cancer cells and arrests tumor progression in vivo. Scientific Reports, 9(1), 1–14.

    Article  Google Scholar 

  32. Marrelli, M., Amodeo, V., Statti, G., & Conforti, F. (2019). Biological properties and bioactive components of Allium cepa L.: Focus on potential benefits in the treatment of obesity and related comorbidities. https://doi.org/10.3390/molecules24010119

  33. Nemzer, B., & Kalita, D. (2023). Bioaccessibility, bioavailability, antioxidant activities and health beneficial properties of some selected spices (D. E. Ivanišová (Ed.); p. Ch. 3). IntechOpen. https://doi.org/10.5772/intechopen.109774

  34. Özkan, İ., Koçak, P., Yıldırım, M., Ünsal, N., Yılmaz, H., Telci, D., & Şahin, F. (2021). Garlic (Allium sativum)-derived SEVs inhibit cancer cell proliferation and induce caspase mediated apoptosis. Scientific Reports, 11(1), 1–11.

    Article  Google Scholar 

  35. Perut, F., Roncuzzi, L., Avnet, S., Massa, A., Zini, N., Sabbadini, S., Giampieri, F., Mezzetti, B., & Baldini, N. (2021). Strawberry-derived exosome-like nanoparticles prevent oxidative stress in human mesenchymal stromal cells. Biomolecules, 11(1), 87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Prado, N., de Dios Alché, J., Casado-Vela, J., Mas, S., Villalba, M., Rodríguez, R., & Batanero, E. (2014). Nanovesicles are secreted during pollen germination and pollen tube growth: A possible role in fertilization. Molecular Plant, 7(3), 573–577.

    Article  CAS  PubMed  Google Scholar 

  37. Raimondo, S., Naselli, F., Fontana, S., Monteleone, F., Dico, A., Lo, Saieva, & L., Zito, G., Flugy, A., Manno, M., Bella, A., Di, Leo, G., De, & Alessandro, R. (2015). Citrus limon-derived nanovesicles inhibit cancer cell proliferation and suppress CML xenograft growth by inducing TRAIL-mediated cell death. Oncotarget, 6(23), 19514–19527.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Rajandeep, K., Karan, K., & Harpreet, K. (2011). Plants as a source of anticancer agents. Journal of Natural Products Plant Resource, 1(1), 119–124.

    Google Scholar 

  39. Şahin, F., Koçak, P., Güneş, M. Y., Özkan, İ., Yıldırım, E., & Kala, E. Y. (2019). In vitro wound healing activity of wheat-derived nanovesicles. Applied Biochemistry and Biotechnology, 188(2), 381–394.

    Article  PubMed  Google Scholar 

  40. Sarkar, A., Paul, A., Banerjee, T., Maji, A., Saha, S., Bishayee, A., & Maity, T. K. (2023). Therapeutic advancements in targeting BCL-2 family proteins by epigenetic regulators, natural, and synthetic agents in cancer. European Journal of Pharmacology, 944, 175588.

    Article  CAS  PubMed  Google Scholar 

  41. Shang, L. H., Li, C. M., Yang, Z. Y., Che, D. H., Cao, J. Y., & Yu, Y. (2012). Luffa Echinata Roxb. Induces human colon cancer cell (HT-29) death by triggering the mitochondrial apoptosis pathway. Molecules, 17(5), 5780–5794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Singh, M., Jha, R. P., Shri, N., Bhattacharyya, K., Patel, P., & Dhamnetiya, D. (2022). Secular trends in incidence and mortality of cervical cancer in India and its states, 1990–2019: Data from the global burden of Disease 2019 study. BMC Cancer, 22(1), 1–12.

    Article  Google Scholar 

  43. Singh, P., & Lim, B. (2022). Targeting apoptosis in cancer. Current Oncology Reports, 24(3), 273–284.

    Article  CAS  PubMed  Google Scholar 

  44. Tajik, T., Baghaei, K., Moghadam, V. E., Farrokhi, N., & Salami, S. A. (2022). Extracellular vesicles of cannabis with high CBD content induce anticancer signaling in human hepatocellular carcinoma. Biomedicine & Pharmacotherapy, 152, 113209.

    Article  CAS  Google Scholar 

  45. Takakura, H., Nakao, T., Narita, T., Horinaka, M., Nakao-Ise, Y., Yamamoto, T., Iizumi, Y., Watanabe, M., Sowa, Y., & Oda, K. (2022). Citrus limon L.-derived nanovesicles show an inhibitory effect on cell growth in p53-inactivated colorectal cancer cells via the macropinocytosis pathway. Biomedicines, 10(6), 1352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Thouri, A., La Barbera, L., Canuti, L., Vegliante, R., Jelled, A., Flamini, G., Ciriolo, M. R., & Achour, L. (2019). Antiproliferative and apoptosis-inducing effect of common Tunisian date seed (var. Korkobbi and Arechti) phytochemical-rich methanolic extract. Environmental Science and Pollution Research, 26, 36264–36273.

    Article  CAS  PubMed  Google Scholar 

  47. Wang, B., Zhuang, X., Deng, Z., Jiang, H., Mu, J., Wang, Q., **ang, X., Guo, H., Zhang, L., Dryden, G., Yan, J., Miller, D., & Zhang, H. (2014). Targeted drug delivery to intestinal macrophages by bioactive nanovesicles released from grapefruit. Molecular Therapy, 22(3), 522–534. https://doi.org/10.1038/mt.2013.190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang, F., Luo, L., & McLafferty, S. (2010). Healthcare access, socioeconomic factors and late-stage cancer diagnosis: An exploratory spatial analysis and public policy implication. International Journal of Public Policy, 5(2–3), 237–258.

    PubMed  Google Scholar 

  49. Wang, Q., Zhuang, X., Mu, J., Deng, Z. B., Jiang, H., Zhang, L., **ang, X., Wang, B., Yan, J., & Miller, D. (2013). Delivery of therapeutic agents by nanoparticles made of grapefruit-derived lipids. Nature Communications, 4(1), 1–13.

    Article  Google Scholar 

  50. Woith, E., & Melzig, M. F. (2019). Extracellular vesicles from fresh and dried plants—Simultaneous purification and visualization using gel electrophoresis. International Journal of Molecular Sciences, 20(2), 357.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Wongkaewkhiaw, S., Wongrakpanich, A., Krobthong, S., Saengsawang, W., Chairoungdua, A., & Boonmuen, N. (2022). Induction of apoptosis in human colorectal cancer cells by nanovesicles from fingerroot (Boesenbergia rotunda (L.) Mansf). Plos One, 17(4), e0266044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. **ao, J., Feng, S., Wang, X., Long, K., Luo, Y., Wang, Y., Ma, J., Tang, Q., **, L., & Li, X. (2018). Identification of exosome-like nanoparticle-derived microRNAs from 11 edible fruits and vegetables. PeerJ, 6, e5186.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Xu, Z., Xu, Y., Zhang, K., Liu, Y., Liang, Q., Thakur, A., Liu, W., & Yan, Y. (2023). Plant-derived extracellular vesicles (PDEVs) in nanomedicine for human disease and therapeutic modalities. Journal of Nanobiotechnology, 21(1), 1–13.

    Article  Google Scholar 

  54. Yang, M., Liu, X., Luo, Q., Xu, L., & Chen, F. (2020). An efficient method to isolate lemon derived extracellular vesicles for gastric cancer therapy. Journal of Nanobiotechnology, 18(1), 1–12.

    Article  CAS  Google Scholar 

  55. You, J. Y., Kang, S. J., & Rhee, W. J. (2021). Isolation of cabbage exosome-like nanovesicles and investigation of their biological activities in human cells. Bioactive Materials, 6(12), 4321–4332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang, M., Viennois, E., Xu, C., & Merlin, D. (2016). Plant derived edible nanoparticles as a new therapeutic approach against diseases. Tissue Barriers, 4(2), 1–9. https://doi.org/10.1080/21688370.2015.1134415

    Article  CAS  Google Scholar 

  57. Zhuang, X., Deng, Z., Mu, J., Zhang, L., Yan, J., Miller, D., Feng, W., Mcclain, C. J., & Zhang, H. (2015). Ginger-derived nanoparticles protect against alcohol-induced liver damage. 3078. https://doi.org/10.3402/jev.v4.28713

Download references

Funding

This work was supported by financial assistance to Vinayak Sharma from the University Grant Commission, India.

Author information

Authors and Affiliations

Authors

Contributions

Vinayak Sharma: investigation, writing and editing original draft, review and editing original draft.

Eshu Singhal Sinha: supervision, review and editing original draft.

Jagtar Singh: supervision, review and editing original draft.

Corresponding author

Correspondence to Jagtar Singh.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, V., Sinha, E.S. & Singh, J. Investigation of In Vitro Anti-cancer and Apoptotic Potential of Onion-Derived Nanovesicles Against Prostate and Cervical Cancer Cell Lines. Appl Biochem Biotechnol (2024). https://doi.org/10.1007/s12010-024-04872-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12010-024-04872-z

Keywords

Navigation