Log in

Development of Green-Synthesized Carbon-Based Nanoparticle for Prevention of Surface Wound Biofilm

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The development of microbial biofilm occurs with the adherence of the microbial cells on biotic and abiotic surfaces with the help of pili and with extracellular polymeric substances. The surfaces on which biofilm formation take place can be inert, abiotic, or biotic. The sessile microbial cells behave differently from their planktonic counterpart. The biofilm developed by Alcaligenes faecalis is responsible for the development of skin and soft-tissue infection. It was observed that green-synthesized carbon nanoparticles (NPs) from Ocimum sanctum showed a prolonged stability and activity. It showed a marked reduction in the viability of sessile microbial species with least revival in comparison to the plant extract and amoxicillin. It was observed that carbon NP was able to maximally reduce the quorum sensing (QS) activity of A. faecalis. Thus, the use of green-synthesized NPs would be an alternative in the treatment of the biofilm-associated chronic wound infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Lahiri, D., Dash, S., Dutta, R., et al. (2019). Elucidating the effect of anti-biofilm activity of bioactive compounds extracted from plants. Journal of Biosciences, 44, 52. https://doi.org/10.1007/s12038-019-9868-4

    Article  PubMed  Google Scholar 

  2. Lahiri, D., et al. (2021). Biofilm and antimicrobial resistance. In R. R. Ray, M. Nag, & D. Lahiri (Eds.), Biofilm-mediated diseases: causes and controls. Singapore: Springer. https://doi.org/10.1007/978-981-16-0745-5_8

    Chapter  Google Scholar 

  3. Nag, M., Lahiri, D., Dutta, B., et al. (2021). Biodegradation of used polyethylene bags by a new marine strain of Alcaligenes faecalis LNDR-1. Environmental Science and Pollution Research, 28, 41365–41379. https://doi.org/10.1007/s11356-021-13704-0

    Article  PubMed  CAS  Google Scholar 

  4. Shoda, M., et al. (2020). Alcaligenes. Beneficial microbes in agro-ecology (pp. 13–26). Amsterdam: Academic Press. https://doi.org/10.1016/b978-0-12-823414-3.00002-2

    Chapter  Google Scholar 

  5. Patra, J. K., Das, G., Fraceto, L. F., Campos, E., Rodriguez-Torres, M., Acosta-Torres, L. S., Diaz-Torres, L. A., Grillo, R., Swamy, M. K., Sharma, S., Habtemariam, S., & Shin, H. S. (2018). Nano based drug delivery systems: Recent developments and future prospects. Journal of Nanobiotechnology, 16(1), 71.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lahiri, D., Nag, M., Dutta, B., Dash, S., Ghosh, S., & Ray, R. (2021). Synergistic effect of quercetin with allicin from the ethanolic extract of Allium cepa as a potent antiquorum sensing and anti-biofilm agent against oral biofilm. In D. Ramkrishna, S. Sengupta, Bandyopadhyay S. Dey, & A. Ghosh (Eds.), Advances in bioprocess engineering and technology. Lecture Notes in Bioengineering. Singapore: Springer.

    Google Scholar 

  7. Jeyaseelan, E. C., & Jashothan, P. T. (2012). In vitro control of Staphylococcus aureus (NCTC 6571) and Escherichia coli (ATCC 25922) by Ricinus communis L. Asian Pacific Journal of Tropical Biomedicine, 2(9), 717–721.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Khalilzadeh, M. A., & Borzoo, M. (2016). Green synthesis of silver nanoparticles using onion extract and their application for the preparation of a modified electrode for determination of ascorbic acid. Journal of Food and Drug Analysis, 24(4), 796–803.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Tiwari, V., Mishra, N., Gadani, K., Solanki, P. S., Shah, N. A., & Tiwari, M. (2018). Mechanism of anti-bacterial activity of zinc oxide nanoparticle against Carbapenem-resistant Acinetobacter baumannii. Frontiers in Microbiology, 9, 1218.

    Article  PubMed  PubMed Central  Google Scholar 

  10. **i, D., & Sharmila, S. (2019). Green synthesis of silver nanoparticles from Allium cepa and its in vitro antidiabetic activity. Materials Today: Proceedings, 22(3), 432–438.

    Google Scholar 

  11. Vu, B., Chen, M., Crawford, R. J., & Ivanova, E. P. (2009). Bacterial extracellular polysaccharides involved in biofilm formation. Molecules, 14(7), 2535–2554.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Conway, B. A., Venu, V., & Speert, D. P. (2002). Biofilm formation and acyl homoserine lactone production in the Burkholderia cepacia complex. Journal of Bacteriology, 184(20), 5678–5685.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Gala, V. C., John, N. R., Bhagwat, A. M., Datar, A. G., Kharkar, P. S., & Desai, K. B. (2016). Attenuation of quorum sensing-regulated behaviour by Tinospora cordifolia extract & identification of its active constituents. The Indian Journal of Medical Research, 144(1), 92–103. https://doi.org/10.4103/0971-5916.193295

    Article  PubMed  PubMed Central  Google Scholar 

  14. Krishnaraj, C., Jagan, E. G., Rajasekar, S., Selvakumar, P., Kalaichelvan, P. T., & Mohan, N. (2010). Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids and Surfaces B Biointerfaces, 76, 50–56.

    Article  PubMed  CAS  Google Scholar 

  15. Rajendran, N. K., George, B. P., Houreld, N. N., & Abrahamse, H. (2021). Synthesis of zinc oxide nanoparticles using Rubus fairholmianus root extract and their activity against pathogenic bacteria. Molecules (Basel, Switzerland), 26(10), 3029. https://doi.org/10.3390/molecules26103029

    Article  PubMed  CAS  Google Scholar 

  16. Vijayalakshmi, U., Chellappa, M., Anjaneyulu, U., Manivasagam, G., & Sethu, S. (2016). Influence of coating parameter and sintering atmosphere on the corrosion resistance behavior of electrophoretically deposited composite coatings. Materials and Manufacturing Processes, 31, 95–106. https://doi.org/10.1080/10426914.2015.1070424

    Article  CAS  Google Scholar 

  17. Selim, Y. A., Azb, M. A., Ragab, I., et al. (2020). Green synthesis of zinc oxide nanoparticles using aqueous extract of Deverra tortuosa and their cytotoxic activities. Science and Reports, 10, 3445. https://doi.org/10.1038/s41598-020-60541-1

    Article  CAS  Google Scholar 

  18. Jamdagni, P., Khatri, P., & Rana, J. (2018). Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbor-tristis and their antifungal activity. Journal of King Saud University - Science, 30, 168–175. https://doi.org/10.1016/j.jksus.2016.10.002

    Article  Google Scholar 

  19. Taş, A. C., Majewski, P. J., & Aldinger, F. (2000). Chemical preparation of pure and strontium-and/or magnesium-doped lanthanum gallate powders. Journal of the American Ceramic Society, 83, 2954–2960. https://doi.org/10.1111/j.1151-2916.2000.tb01666.x

    Article  Google Scholar 

  20. Sangeetha, G., Rajeshwari, S., & Venckatesh, R. (2011). Green synthesis of zinc oxide nanoparticles by aloe barbadensis miller leaf extract: Structure and optical properties. Materials Research Bulletin, 46, 2560–2566. https://doi.org/10.1016/j.materresbull.2011.07.046

    Article  CAS  Google Scholar 

  21. Jan, H., Shah, M., Usman, H., Khan, M. A., Zia, M., Hano, C., & Abbasi, B. H. (2020). Biogenic synthesis and characterization of antimicrobial and antiparasitic zinc oxide (ZnO) nanoparticles using aqueous extracts of the Himalayan Columbine (Aquilegia pubiflora). Frontiers in Materials, 7, 249.

    Article  Google Scholar 

  22. Singh, A., Gautam, P. K., Verma, A., Singh, V., Shivapriya, P. M., Shivalkar, S., Sahoo, A. K., & Samanta, S. K. (2020). Green synthesis of metallic nanoparticles as effective alternatives to treat antibiotics resistant bacterial infections: a review. Biotechnology Reports (Amsterdam, Netherlands), 25, e00427. https://doi.org/10.1016/j.btre.2020.e00427

    Article  PubMed  Google Scholar 

  23. Gunalan, S., Sivaraj, R., & Rajendran, V. (2012). Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Progress in Natural Science: Materials International, 22(6), 693–700.

    Article  Google Scholar 

  24. Divya, M., Vaseeharan, B., Abinaya, M., Vijayakumar, S., Govindarajan, M., Alharbi, N. S., Kadaikunnan, S., Khaled, J. M., & Benelli, G. (2018). Biopolymer gelatin-coated zinc oxide nanoparticles showed high antibacterial, antibiofilm and anti-angiogenic activity. Journal of Photochemistry and Photobiology B: Biology, 178, 211–218. https://doi.org/10.1016/j.jphotobiol.2017.11.008

    Article  PubMed  CAS  Google Scholar 

  25. Al-Shabib, N. A., Husain, F. M., Ahmed, F., Khan, R. A., Ahmad, I., Alsharaeh, E., Khan, M. S., Hussain, A., Rehman, M. T., Yusuf, M., Hassan, I., Khan, J. M., Ashraf, G. M., Alsalme, A., Al-Ajmi, M. F., Tarasov, V. V., & Aliev, G. (2016). Biogenic synthesis of zinc oxide nanostructures from Nigella sativa seed: prospective role as food packaging material inhibiting broad-spectrum quorum sensing and biofilm. Scientific Reports, 6(1), 36761. https://doi.org/10.1038/srep36761

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Fan, Z., & Lu, J. G. (2005). Zinc oxide nanostructures: Synthesis and properties. Journal of Nanoscience and Nanotechnology, 5(10), 1561–1573.

    Article  PubMed  CAS  Google Scholar 

  27. Franklin, N. M., Rogers, N. J., Apte, S. C., et al. (2007). Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): The importance of particle solubility. Environmental Science and Technology, 41(24), 8484–8490.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, M., Li, Z. Development of Green-Synthesized Carbon-Based Nanoparticle for Prevention of Surface Wound Biofilm. Appl Biochem Biotechnol (2023). https://doi.org/10.1007/s12010-023-04695-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12010-023-04695-4

Keywords

Navigation