Log in

Detection of Quorum Sensing N-Acyl-Homoserine Lactone Molecules Produced by Different Resistant Klebsiella pneumoniae Isolates Recovered from Poultry and Different Environmental Niches

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This study aimed to detect and identify the N-acyl-homoserine lactones molecules (AHLs) produced by different resistant Klebsiella pneumoniae isolates recovered from poultry and environmental samples using a modified validated high-performance liquid chromatography method. A total of 56 K. pneumoniae isolates were recovered, investigated for their antibiotic susceptibility, and screened for AHLs production using the Agrobacterium tumefaciens NTL4 biosensor system and a validated high-performance liquid chromatography method. The results revealed the detection of different short- and long-chain AHLs molecules among 39 K. pneumoniae isolates recovered from poultry and environmental samples. All environmental isolates produced nine peaks with retention times for C4-HSL, C6-HSL, C12-HSL, C8-HSL, C14-HSL, C8-oxo-HSL, C10-HSL, C6-oxo-HSL, and C7-HSL. The most quantifiable AHL signal molecules in poultry isolates were C4-HSL, C6-HSL, and C12-HSL. No statistical correlation between the AHL-producing ability of K. pneumoniae isolates and antibiotic resistance was reported. To the best of our knowledge, this study provides the first detailed report on the detection and identification of AHLs in K. pneumoniae isolates recovered from poultry and environmental samples. Furthermore, it provides a new insight available tool other than LC-MS/MS for detection and identification of AHL molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and its supporting information.

References

  1. Hayati, M., Indrawati, A., Mayasari, N. L. P. I., Istiyaningsih, I., & Atikah, N. (2019). Molecular detection of extended-spectrum β-lactamase-producing Klebsiella pneumoniae isolates of chicken origin from East Java, Indonesia. Veterinary World, 12(4), 578–583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Guo, Y., Zhou, H., Qin, L., Pang, Z., Qin, T., Ren, H., & Zhou, J. (2016). Frequency, antimicrobial resistance and genetic diversity of Klebsiella pneumoniae in food samples. PLoS One, 11(4), e0153561.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Savin, M., Bierbaum, G., Hammerl, J. A., Heinemann, C., Parcina, M., Sib, E., & Kreyenschmidt, J. (2020). ESKAPE bacteria and extended-spectrum-β-lactamase-producing Escherichia coli isolated from wastewater and process water from German poultry slaughterhouses. Applied and Environmental Microbiology, 86(8).

  4. Chen, L., Wilksch, J. J., Liu, H., Zhang, X., Torres, V. V., Bi, W., ... & Zhou, T. (2020). Investigation of LuxS-mediated quorum sensing in Klebsiella pneumoniae. Journal of Medical Microbiology, 69(3), 402, 413.

  5. Koraimann, G., & Wagner, M. A. (2014). Social behavior and decision making in bacterial conjugation. Frontiers in Cellular and Infection Microbiology, 4, 54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Liu, W., Lu, H., Chu, X., Lou, T., Zhang, N., Zhang, B., & Chu, W. (2020). Tea polyphenols inhibits biofilm formation, attenuates the quorum sensing-controlled virulence and enhances resistance to Klebsiella pneumoniae infection in Caenorhabditis elegans model. Microbial Pathogenesis, 147, 104266.

    Article  CAS  PubMed  Google Scholar 

  7. Yin, W.-F., Purmal, K., Chin, S., Chan, X.-Y., Koh, C.-L., Sam, C.-K., & Chan, K.-G. (2012). N-acyl homoserine lactone production by Klebsiella pneumoniae isolated from human tongue surface. Sensors, 12(3), 3472–3483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nievas, F., Bogino, P., Sorroche, F., & Giordano, W. (2012). Detection, characterization, and biological effect of quorum-sensing signaling molecules in peanut-nodulating bradyrhizobia. Sensors, 12(3), 2851–2873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ngeow, Y. F., Cheng, H. J., Chen, J. W., Yin, W.-F., & Chan, K.-G. (2013). Short chain N-acylhomoserine lactone production by clinical multidrug resistant Klebsiella pneumoniae strain CSG20. Sensors, 13(11), 15242–15251.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Mukesh, K., Harjai, K., & Chhibber, S. (2017). Prevalence of AI-1 type of quorum sensing molecules in Klebsiella pneumoniae clinical isolates. International Journal of Advanced Research, 5(7), 101–107.

    Article  Google Scholar 

  11. Gui, M., Liu, L., Wu, R., Hu, J., Wang, S., & Li, P. (2018). Detection of new quorum sensing N-acyl homoserine lactones from Aeromonas veronii. Frontiers in Microbiology, 9, 1712.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Steindler, L., & Venturi, V. (2007). Detection of quorum-sensing N-acyl homoserine lactone signal molecules by bacterial biosensors. FEMS Microbiology Letters, 266(1), 1–9.

    Article  CAS  PubMed  Google Scholar 

  13. Hamza, E., Dorgham, S. M., & Hamza, D. A. (2016). Carbapenemase-producing Klebsiella pneumoniae in broiler poultry farming in Egypt. Journal of Global Antimicrobial Resistance, 7, 8–10.

    Article  PubMed  Google Scholar 

  14. Hansen, D. S., Aucken, H. M., Abiola, T., & Podschun, R. (2004). Recommended test panel for differentiation of Klebsiella species on the basis of a trilateral interlaboratory evaluation of 18 biochemical tests. Journal of Clinical Microbiology, 42(8), 3665–3669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. CLSI. (2017). Performance standards for antimicrobial susceptibility testing: Twenty-Seventh Informational Supplement. CLSI Document M100-S27. Clinical and Laboratory Standards Institute Wayne, PA.

  16. Lade, H., Paul, D., & Kweon, J. H. (2014). Isolation and molecular characterization of biofouling bacteria and profiling of quorum sensing signal molecules from membrane bioreactor activated sludge. International Journal of Molecular Sciences, 15(2), 2255–2273.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. ICH Q2(R1) (2005). Validation of analytical procedures: text and methodology. International Conference on Harmonization, Geneva.

  18. USP (2017). US Pharmacopeia National Formulary 2017: USP 27 NF 22. In (Vol. 2, pp. 2281). United States Pharmacopeial Convention, Rockville.

  19. Yang, Y., Zhou, M., Hardwidge, P. R., Cui, H., & Zhu, G. (2018). Isolation and characterization of N-acyl homoserine lactone-producing bacteria from cattle rumen and swine intestines. Frontiers in Cellular Infection Microbiology, 8, 155.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Threlfall, E. J., Wain, J., Peters, T., Lane, C., De Pinna, E., Little, C. L., Wales, A. D., & Davies, R. H. (2014). Egg-borne infections of humans with Salmonella: not only an S. Enteritidis problem. Worlds Poultry Science Journal, 70(1), 15–26.

    Article  Google Scholar 

  21. CDC. (2015). Centers for Disease Control National Antimicrobial Resistance Monitoring System for Enteric Bacteria (NARMS): the 2013 NARMS annual human isolates report. US Department of Health Human Services, CDC, Atlanta.

  22. Gantois, I., Ducatelle, R., Pasmans, F., Haesebrouck, F., Gast, R., Humphrey, T. J., & Van Immerseel, F. (2009). Mechanisms of egg contamination by Salmonella Enteritidis. FEMS Microbiology Reviews, 33(4), 718–738.

    Article  CAS  PubMed  Google Scholar 

  23. Khan, K. A., Khan, S. A., Aslam, A., Rabbani, M., & Tipu, M. Y. (2004). Factors contributing to yolk retention in poultry: a review. Pakistan Veterinary Journal, 24, 46–51.

    Google Scholar 

  24. Rehault-Godbert, S., Baron, F., Mignon-Grasteau, S., Labas, V., Gautier, M., Hincke, M. T., & Nys, Y. (2010). Effect of temperature and time of storage on protein stability and anti-Salmonella activity of egg white. Journal Of Food Protection, 73(9), 1604–1612.

    Article  CAS  PubMed  Google Scholar 

  25. Wyres, K. L., & Holt, K. E. (2018). Klebsiella pneumoniae as a key trafficker of drug resistance genes from environmental to clinically important bacteria. Current Opinion in Microbiology, 45, 131–139.

    Article  CAS  PubMed  Google Scholar 

  26. Struve, C., & Krogfelt, K. A. (2004). Pathogenic potential of environmental Klebsiella pneumoniae isolates. Environmental Microbiology, 6(6), 584–590.

    Article  PubMed  Google Scholar 

  27. Khelfa, D., & Morsy, E. A. (2015). Incidence and distribution of some aerobic bacterial agents associated with high chick mortality in some broiler flocks in Egypt. Middle East Journal of Applied Sciences, 5, 383–394.

    Google Scholar 

  28. Aly, M. M., Khalil, S., & Metwaly, A. (2014). Isolation and molecular identification of Klebsiella microbe isolated from chicks. Alexandria Journal for Veterinary Sciences, 43(1), 97–103.

    Article  Google Scholar 

  29. Ojo, O. E., Ogunyinka, O. G., Agbaje, M., Okuboye, J. O., Kehinde, O. O., & Oyekunle, M. A. (2012). Antibiogram of Enterobacteriaceae isolated from free-range chickens in Abeokuta, Nigeria. Veterinarski Arhiv, 82(6), 577–589.

    CAS  Google Scholar 

  30. Ebomah, K. E., & Okoh, A. I. (2020). Detection of carbapenem-resistance genes in Klebsiella species recovered from selected environmental niches in the Eastern Cape Province, South Africa. Antibiotics, 9(7), 425.

    Article  CAS  PubMed Central  Google Scholar 

  31. Samanta, A., Mahanti, A., Chatterjee, S., Joardar, S. N., Bandyopadhyay, S., Sar, T. K., & Samanta, I. (2018). Pig farm environment as a source of beta-lactamase or AmpC-producing Klebsiella pneumoniae and Escherichia coli. Annals of Microbiology, 68(11), 781–791.

    Article  CAS  Google Scholar 

  32. Wu, H., Wang, M., Liu, Y., Wang, X., Wang, Y., Lu, J., & Xu, H. (2016). Characterization of antimicrobial resistance in Klebsiella species isolated from chicken broilers. International Journal of Food Microbiology, 232, 95–102.

    Article  CAS  PubMed  Google Scholar 

  33. Kim, S.-H., Wei, C.-I., Tzou, Y.-M., & An, H. (2005). Multidrug-resistant Klebsiella pneumoniae isolated from farm environments and retail products in Oklahoma. Journal of Food Protection, 68(10), 2022–2029.

    Article  CAS  PubMed  Google Scholar 

  34. Wu, H., Liu, B., Liu, J., Pan, Y., Yuan, L., & Hu, G. (2012). Phenotypic and molecular characterization of CTX-M-14 extended-spectrum beta-lactamase and plasmid-mediated ACT-like AmpC beta-lactamase produced by Klebsiella pneumoniae isolates from chickens in Henan Province, China. Genetics Molecular Research, 11(3), 3357–3364.

    Article  CAS  PubMed  Google Scholar 

  35. Winokur, P., Canton, R., Casellas, J.-M., & Legakis, N. (2001). Variations in the prevalence of strains expressing an extended-spectrum β-lactamase phenotype and characterization of isolates from Europe, the Americas, and the Western Pacific region. Clinical Infectious Diseases, 32(Supplement_2), S94–S103.

    Article  CAS  PubMed  Google Scholar 

  36. Abdallah, N. M. A., Elsayed, S. B., Mostafa, M. M. Y., & El-gohary, G. M. (2011). Biofilm forming bacteria isolated from urinary tract infection, relation to catheterization and susceptibility to antibiotics. International Journal of Biotechnology Molecular Biology Research, 2(10), 172–178.

    CAS  Google Scholar 

  37. Savas, L., Guvel, S., Onlen, Y., Savas, N., & Duran, N. (2006). Nosocomial urinary tract infections: micro-organisms, antibiotic sensitivities and risk factors. West Indian Medical Journal, 55(3), 188.

    Article  CAS  Google Scholar 

  38. Poonguzhali, S., Madhaiyan, M., & Sa, T. (2007). Production of acyl-homoserine lactone quorum-sensing signals is wide-spread in gram-negative Methylobacterium. Journal of Microbiology Biotechnology, 17(2), 226–233.

    CAS  PubMed  Google Scholar 

  39. Wang, L.-H., Weng, L.-X., Dong, Y.-H., & Zhang, L.-H. (2004). Specificity and enzyme kinetics of the quorum-quenching N-acyl homoserine lactone lactonase (AHL-lactonase). Journal of Biological Chemistry, 279(14), 13645–13651.

    Article  CAS  Google Scholar 

  40. Mohammed Sakr, M., Mohamed Anwar Aboshanab, K., Mabrouk Aboulwafa, M., & Abdel-Haleem Hassouna, N. (2013). Characterization and complete sequence of lactonase enzyme from Bacillus weihenstephanensis isolate P65 with potential activity against acyl homoserine lactone signal molecules. BioMed Research International, 2013, 1–10.

    Article  CAS  Google Scholar 

  41. Alshammari, T. M., Al-Hassan, A. A., Hadda, T. B., & Aljofan, M. (2015). Comparison of different serum sample extraction methods and their suitability for mass spectrometry analysis. Saudi Pharmaceutical Journal, 23(6), 689–697.

    Article  PubMed  PubMed Central  Google Scholar 

  42. See-Too, W. S., Convey, P., Pearce, D. A., & Chan, K.-G. (2018). Characterization of a novel N-acylhomoserine lactonase, AidP, from Antarctic Planococcus sp. Microbial Cell Factories, 17(1), 179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vega, L. M., Mathieu, J., Yang, Y., Pyle, B. H., McLean, R. J., & Alvarez, P. J. (2014). Nickel and cadmium ions inhibit quorum sensing and biofilm formation without affecting viability in Burkholderia multivorans. International Biodeterioration Biodegradation, 91, 82–87.

    Article  CAS  Google Scholar 

  44. Ortori, C. A., Dubern, J.-F., Chhabra, S. R., Cámara, M., Hardie, K., Williams, P., & Barrett, D. A. (2011). Simultaneous quantitative profiling of N-acyl-L-homoserine lactone and 2-alkyl-4 (1H)-quinolone families of quorum-sensing signaling molecules using LC-MS/MS. Analytical Bioanalytical Chemistry, 399(2), 839–850.

    Article  CAS  PubMed  Google Scholar 

  45. Yates, E. A., Philipp, B., Buckley, C., Atkinson, S., Chhabra, S. R., Sockett, R. E., Goldner, M., Dessaux, Y., Cámara, M., Smith, H., & Williams, P. (2002). N-acylhomoserine lactones undergo lactonolysis in a pH-, temperature-, and acyl chain length-dependent manner during growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa. Infection Immunity, 70(10), 5635–5646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Leipert, J., Treitz, C., Leippe, M., & Tholey, A. (2017). Identification and quantification of N-acyl homoserine lactones involved in bacterial communication by small-scale synthesis of internal standards and matrix-assisted laser desorption/ionization mass spectrometry. Journal of The American Society for Mass Spectrometry, 28(12), 2538–2547.

    Article  CAS  PubMed  Google Scholar 

  47. Wang, J., Quan, C., Wang, X., Zhao, P., & Fan, S. (2011). Extraction, purification and identification of bacterial signal molecules based on N-acyl homoserine lactones. Microbial Biotechnology, 4(4), 479–490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fekete, A., Frommberger, M., Rothballer, M., Li, X., Englmann, M., Fekete, J., Hartmann, A., Eberl, L., & Schmitt-Kopplin, P. (2007). Identification of bacterial N-acylhomoserine lactones (AHLs) with a combination of ultra-performance liquid chromatography (UPLC), ultra-high-resolution mass spectrometry, and in-situ biosensors. Analytical Bioanalytical Chemistry, 387(2), 455–467.

    Article  CAS  PubMed  Google Scholar 

  49. Cruz, E., Euerby, M., Johnson, C., & Hackett, C. (1997). Chromatographic classification of commercially available reverse-phase HPLC columns. Chromatographia, 44(3-4), 151–161.

    Article  CAS  Google Scholar 

  50. Wang, H., Cai, T., Weng, M., Zhou, J., Cao, H., Zhong, Z., & Zhu, J. (2006). Conditional production of acyl-homoserine lactone-type quorum-sensing signals in clinical isolates of enterobacteria. Journal of Medical Microbiology, 55(12), 1751–1753.

    Article  CAS  PubMed  Google Scholar 

Download references

Code Availability

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Reham A. Hosny designed the workflow, performed cultural isolation of K. pneumoniae and biosensor detection of acyl-homoserine lactone molecules, and performed all statistical analyses throughout the whole manuscript. Mai A. Fadel developed an RP-HPLC method for the detection of N-acyl-homoserine lactone molecules and statistically analyzed validated method results. Reham A. Hosny and Mai A. Fadel wrote, revised, and approved the manuscript.

Corresponding author

Correspondence to Reham A. Hosny.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 16 kb)

ESM 2

(DOCX 15 kb)

ESM 3

(DOCX 13 kb)

ESM 4

(DOCX 16 kb)

ESM 5

(DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosny, R.A., Fadel, M.A. Detection of Quorum Sensing N-Acyl-Homoserine Lactone Molecules Produced by Different Resistant Klebsiella pneumoniae Isolates Recovered from Poultry and Different Environmental Niches. Appl Biochem Biotechnol 193, 3351–3370 (2021). https://doi.org/10.1007/s12010-021-03605-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03605-w

Keywords

Navigation