Log in

Chlorogenic Acids Biosynthesis in Centella asiatica Cells Is not Stimulated by Salicylic Acid Manipulation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Exogenous application of synthetic and natural elicitors of plant defence has been shown to result in mass production of secondary metabolites with nutraceuticals properties in cultured cells. In particular, salicylic acid (SA) treatment has been reported to induce the production of phenylpropanoids, including cinnamic acid derivatives bound to quinic acid (chlorogenic acids). Centella asiatica is an important medicinal plant with several therapeutic properties owing to its wide spectrum of secondary metabolites. We investigated the effect of SA on C. asiatica cells by monitoring perturbation of chlorogenic acids in particular. Different concentrations of SA were used to treat C. asiatica cells, and extracts from both treated and untreated cells were analysed using an optimised UHPLC-QTOF-MS/MS method. Semi-targeted multivariate data analyses with the aid of principal component analysis (PCA) and orthogonal projection to latent structures-discriminant analysis (OPLS-DA) revealed a concentration-dependent metabolic response. Surprisingly, a range of chlorogenic acid derivatives were found to be downregulated as a consequence of SA treatment. Moreover, irbic acid (3,5-O-dicaffeoyl-4-O-malonilquinic acid) was found to be a dominant CGA in C. asiatica cells, although the SA treatment also had a negative effect on its concentration. Overall SA treatment was found to be an ineffective elicitor of CGA production in cultured C. asiatica cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Verpoorte, R., Contin, A., & Memelink, J. (2002). Biotechnology for the production of plant secondary metabolites. Phytochemistry Reviews, 1, 13–25. doi:10.1023/A:1015871916833.

    Article  CAS  Google Scholar 

  2. Kolewe, M. E., Gaurav, V., & Roberts, S. C. (2008). Pharmaceutically active natural product synthesis and supply via plant cell culture technology. Molecular Pharmaceutics, 5, 243–256. doi:10.1021/mp7001494.

    Article  CAS  Google Scholar 

  3. Gallego, A., Ramirez-Estrada, K., Vidal-Limon, H. R., Hidalgo, D., Lalaleo, L., Khan Kayani, W., Cusido, R. M., & Palazon, J. (2014). Biotechnological production of centellosides in cell cultures of Centella asiatica (L) Urban. Engineering in Life Sciences, 14, 633–642. doi:10.1002/elsc.201300164.

    Article  CAS  Google Scholar 

  4. Gupta, A., Verma, S., Kushwaha, P., Srivastava, S., & Aks, R. (2014). Quantitative estimation of asiatic acid, asiaticoside & madecassoside in two accessions of Centella asiatica (L) Urban for morpho-chemotypic variation. Indian Journal of Pharmaceutical Education and Research, 48, 75–79. doi:10.5530/ijper.48.3.9.

    Article  Google Scholar 

  5. Mangas, S., Bonfill, M., Osuna, L., Moyano, E., Tortoriello, J., Cusido, R. M., Teresa Piñol, M., & Palazón, J. (2006). The effect of methyl jasmonate on triterpene and sterol metabolisms of Centella asiatica, Ruscus aculeatus and Galphimia glauca cultured plants. Phytochemistry, 67, 2041–2049. doi:10.1016/j.phytochem.2006.06.025.

    Article  CAS  Google Scholar 

  6. Pieterse, C. M. J., Leon-Reyes, A., Van der Ent, S., & Van Wees, S. C. M. (2009). Networking by small-molecule hormones in plant immunity. Nature Chemical Biology, 5, 308–316. doi:10.1038/nchembio.164.

    Article  CAS  Google Scholar 

  7. Hayat, Q., Hayat, S., Irfan, M., & Ahmad, A. (2010). Effect of exogenous salicylic acid under changing environment: a review. Environmental and Experimental Botany, 68, 14–25. doi:10.1016/j.envexpbot.2009.08.005.

    Article  CAS  Google Scholar 

  8. Ali, M. B., Hahn, E. J., & Paek, K. Y. (2007). Methyl jasmonate and salicylic acid induced oxidative stress and accumulation of phenolics in Panax ginseng bioreactor root suspension cultures. Molecules, 12, 607–621. doi:10.3390/12030607.

    Article  CAS  Google Scholar 

  9. Rodas-Junco, B. A., Cab-Guillén, Y., Muñoz-Sánchez, J. A., Vázquez-Flota, F., Monforte-González, M., & Hernández-Sotomayor, S. M. T. (2013). Salicylic acid induces vanillin synthesis through the phospholipid signaling pathway in Capsicum chinense cell cultures. Plant Signaling & Behavior, 8, e26752–1–8. doi:10.4161/psb.26752.

    Article  Google Scholar 

  10. James, J. T., & Dubery, I. A. (2009). Pentacyclic triterpenoids from the medicinal herb, Centella asiatica (L.) Urban. Molecules, 14, 3922–3941. doi:10.3390/molecules14103922.

    Article  CAS  Google Scholar 

  11. Oyedeji, O. A., & Afolayan, A. J. (2005). Chemical composition and antibacterial activity of the essential oil of Centella asiatica growing in South Africa. Pharmaceutical Biology, 43, 249–252. doi:10.1080/13880200590928843.

    Article  CAS  Google Scholar 

  12. James, J. T., Meyer, R., & Dubery, I. A. (2008). The occurrence of triterpenoid saponins in callus, cell suspensions and leaves of two Southern African phenotypes of Centella asiatica. Plant Cell, Tissue and Organ Culture, 94, 91–99.

    Article  CAS  Google Scholar 

  13. James, J. T., Tugizimana, F., Steenkamp, P. A., & Dubery, I. A. (2013). Metabolomic analysis of methyl jasmonate-induced triterpenoid production in the medicinal herb Centella asiatica (L.) Urban. Molecules, 18, 4267–4281. doi:10.3390/molecules18044267.

    Article  CAS  Google Scholar 

  14. Kim, O. T., Um, Y., **, M. L., Kim, Y. C., Bang, K. H., Hyun, D. Y., Lee, H. S., & Lee, Y. (2013). Analysis of expressed sequence tags from Centella asiatica (L.) Urban hairy roots elicited by methyl jasmonate to discover genes related to cytochrome P450s and glucosyltransferases. Plant Biotechnology Reports, 8, 211–220. doi:10.1007/s11816-013-0311-2.

    Article  Google Scholar 

  15. Raoseta, O., Rodier-goud, M., Rivallan, R., Lussert, A., Danthu, P., Lamotte, F. D., Ramavovololona, P., Noyer, J.-L., & Baurens, F. (2013). Insight into the biology, genetics and evolution of the Centella asiatica polyploid complex in Madagascar. Industrial Crops and Products, 47, 118–125. doi:10.1016/j.indcrop.2013.02.022.

    Article  Google Scholar 

  16. Maulidiani, Abas, F., Khatib, A., Shaari, K., & Lajis, N. H. (2014). Chemical characterization and antioxidant activity of three medicinal Apiaceae species. Industrial Crops and Products, 55, 238–247. doi:10.1016/j.indcrop.2014.02.013.

    Article  CAS  Google Scholar 

  17. Tugizimana, F., Ncube, E. N., Steenkamp, P. A., & Dubery, I. A. (2015). Metabolomics-derived insights into the manipulation of terpenoid synthesis in Centella asiatica cells by methyl jasmonate. Plant Biotechnology Reports, 9, 125–136. doi:10.1007/s11816-015-0350-y.

    Article  Google Scholar 

  18. Govarthanan, M., Ra**ikanth, R., Kamala-Kannan, S., & Selvankumar, T. (2015). A comparative study on bioactive constituents between wild and in vitro propagated Centella asiatica. Journal of Genetic Engineering and Biotechnology, 13, 25–29. doi:10.1016/j.jgeb.2014.12.003.

    Article  Google Scholar 

  19. Bylka, W., Znajdek-Awiżeń, P., Studzińska-Sroka, E., Dańczak-Pazdrowska, A., & Brzezińska, M. (2014). Centella asiatica in dermatology: an overview. Phytotherapy Research, 28, 7–1124. doi:10.1002/ptr.5110.

    Article  Google Scholar 

  20. Omar, N. S., Akmal, Z., Zakaria, C., & Mian, T. S. (2011). Centella asiatica modulates neuron cell survival by altering caspase-9 pathway. Journal of Medicinal Plants Research, 5, 2201–2209.

    Google Scholar 

  21. Soumyanath, A., Zhong, Y. P., Henson, E., Wadsworth, T., Bishop, J., Gold, B. G., & Quinn, J. F. (2012). Centella asiatica extract improves behavioral deficits in a mouse model of Alzheimer’s disease: investigation of a possible mechanism of action. International Journal of Alzheimers Disease, 2012, 381974. doi:10.1155/2012/381974.

    Google Scholar 

  22. Gray, N. E., Morré, J., Kelley, J., Maier, C. S., Stevens, J. F., Joseph, F., & Soumyanath, A. (2014). Caffeoylquinic acids in Centella asiatica protect against β-amyloid toxicity. Journal of Alzheimers Disease, 40, 359–373. doi:10.3233/JAD-131913.

    CAS  Google Scholar 

  23. Dhanasekaran, M., Holcomb, L., Hitt, A., Tharakhan, B., Porter, J., Young, K., & Manyam, B. (2009). Centella asiatica extract selectively decreases amyloid beta levels in hippocampus of Alzheimer’s disease animal model. Phytotherapy Research, 23, 14–19. doi:10.1002/ptr.

    Article  Google Scholar 

  24. Santos, R. M. M., Hunter, T., Wright, N., & Andrade, L. D. R. (2013). Caffeine and chlorogenic acids in coffee and effects on selective neurodegenerative diseases. Journal of Pharmaceutical and Scientific Innovation, 2, 9–17.

    Article  Google Scholar 

  25. Clifford, M. N. (2000). Review chlorogenic acids and other cinnamates—nature, occurrence, dietary burden, absorption and metabolism. Journal of the Science of Food and Agriculture, 80, 1033–1043. doi:10.1002/(SICI)1097-0010(20000515)80:7<1033::AID-JSFA595>3.0.CO;2-T.

    Article  CAS  Google Scholar 

  26. Marques, V., & Farah, A. (2009). Chlorogenic acids and related compounds in medicinal plants and infusions. Food Chemistry, 113, 1370–1376. doi:10.1016/j.foodchem.2008.08.086.

    Article  CAS  Google Scholar 

  27. Koshiro, Y., Jackson, M. C., Katahira, R., Wang, M. L., Nagai, C., & Ashihara, H. (2007). Biosynthesis of chlorogenic acids in growing and ripening fruits of Coffea arabica and Coffea canephora plants. Zeitschrift für Naturforschung—Section C, 62, 731–742.

    CAS  Google Scholar 

  28. Plazas, M., Andújar, I., Vilanova, S., Hurtado, M., Gramazio, P., Herraiz, F. J., & Prohens, J. (2013). Breeding for chlorogenic acid content in eggplant: interest and prospects. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 41, 26–35.

    CAS  Google Scholar 

  29. Alakolanga, A. G. A. W., Siriwardene, A. M. D., Savitri Kumar, N., Jayasinghe, L., Jaiswal, R., & Kuhnert, N. (2014). LC-MSn identification and characterization of the phenolic compounds from the fruits of Flacourtia indica (Burm. F.) Merr. and Flacourtia inermis Roxb. Food Research International, 62, 388–396. doi:10.1016/j.foodres.2014.03.036.

    Article  CAS  Google Scholar 

  30. Long, H. S., Stander, M. A., & Van Wyk, B. E. (2012). Notes on the occurrence and significance of triterpenoids (asiaticoside and related compounds) and caffeoylquinic acids in Centella species. South African Journal of Botany, 82, 53–59. doi:10.1016/j.sajb.2012.07.017.

    Article  CAS  Google Scholar 

  31. Antognoni, F., Perellino, N. C., Crippa, S., Dal Toso, R., Danieli, B., Minghetti, A., Poli, F., & Pressi, G. (2011). Irbic acid, a dicaffeoylquinic acid derivative from Centella asiatica cell cultures. Fitoterapia, 82, 950–954. doi:10.1016/j.fitote.2011.05.008.

    Article  CAS  Google Scholar 

  32. Mhlongo, M. I., Piater, L. A., Steenkamp, P. A., Madala, N. E., & Dubery, I. A. (2014). Priming agents of plant defence stimulate the accumulation of mono- and di-acylated quinic acids in cultured tobacco cells. Physiological and Molecular Plant Pathology, 88, 61–66. doi:10.1016/j.pmpp.2014.09.002.

    Article  CAS  Google Scholar 

  33. Sanabria, N. M., & Dubery, I. A. (2006). Differential display profiling of the Nicotiana response to LPS reveals elements of plant basal resistance. Biochemical and Biophysical Research Communications, 344, 1001–1007. doi:10.1016/j.bbrc.2006.03.216.

    Article  CAS  Google Scholar 

  34. Ncube, E. N., Mhlongo, M. I., Piater, L. A., Steenkamp, P. A., Dubery, I. A., & Madala, N. E. (2014). Analyses of chlorogenic acids and related cinnamic acid derivatives from Nicotiana tabacum tissues with the aid of UPLC-QTOF-MS/MS based on the in-source collision-induced dissociation method. Chemistry Central Journal, 8, 1–10. doi:10.1186/s13065-014-0066-z.

    Article  Google Scholar 

  35. Clifford, M. N., Knight, S., & Kuhnert, N. (2005). Discriminating between the six isomers of dicaffeoylquinic acid by LC-MSn. Journal of Agricultural and Food Chemistry, 53, 3821–3832. doi:10.1021/jf050046h.

    Article  CAS  Google Scholar 

  36. Clifford, M. N., Kirkpatrick, J., Kuhnert, N., Roozendaal, H., & Salgado, P. R. (2008). LC-MSn analysis of the cis isomers of chlorogenic acids. Food Chemistry, 106, 379–385. doi:10.1016/j.foodchem.2007.05.081.

    Article  CAS  Google Scholar 

  37. Jaiswal, R., Müller, H., Müller, A., Karar, M. G. E., & Kuhnert, N. (2014). Identification and characterization of chlorogenic acids, chlorogenic acid glycosides and flavonoids from Lonicera henryi L. (Caprifoliaceae) leaves by LC–MSn. Phytochemistry, 108, 252–263. doi:10.1016/j.phytochem.2014.08.023.

    Article  CAS  Google Scholar 

  38. Sumner, L. W., Amberg, A., Barrett, D., Beale, M. H., Beger, R., Daykin, C. A., et al. (2007). Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG), Metabolomics Standards Initiative (MSI). Metabolomics, 3, 211–221. doi:10.1007/s11306-007-0082-2.

    Article  CAS  Google Scholar 

  39. Trygg, J., Holmes, E., & Lundstedt, T. (2007). Chemometrics in metabonomics. Journal of Proteome Research, 6, 469–479. doi:10.1021/pr060594q.

    Article  CAS  Google Scholar 

  40. Wiklund, S., Johansson, E., Sjöström, L., Mellerowicz, E. J., Edlund, U., Shockcor, J. P., Gottfries, J., Moritz, T., & Trygg, J. (2008). Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Analytical Chemistry, 80, 115–122. doi:10.1021/ac0713510.

    Article  CAS  Google Scholar 

  41. Galindo-Prieto, B., Eriksson, L., & Trygg, J. (2014). Variable influence on projection (VIP) for orthogonal projections to latent structures (OPLS). Journal of Chemometrics, 28, 623–632. doi:10.1002/cem.2627.

    Article  CAS  Google Scholar 

  42. Madala, N. E., Steenkamp, P. A., Piater, L. A., & Dubery, I. A. (2014). Metabolomic insights into the bioconversion of isonitrosoacetophenone in Arabidopsis thaliana and its effects on defense-related pathways. Plant Physiology and Biochemistry, 84, 87–95. doi:10.1016/j.plaphy.2014.08.023.

    Article  CAS  Google Scholar 

  43. Saccenti, E., Hoefsloot, H. C. J., Smilde, A. K., Westerhuis, J. A., & Hendriks, M. M. W. B. (2014). Reflections on univariate and multivariate analysis of metabolomics data. Metabolomics, 10, 361–374. doi:10.1007/s11306-013-0598-6.

    Article  CAS  Google Scholar 

  44. Zhang, J. Y., Zhang, Q., Li, N., Wang, Z. J., Lu, J. Q., & Qiao, Y. J. (2013). Diagnostic fragment-ion-based and extension strategy coupled to DFIs intensity analysis for identification of chlorogenic acids isomers in Flos Lonicerae Japonicae by HPLC-ESI-MSn. Talanta, 104, 1–9. doi:10.1016/j.talanta.2012.11.012.

    Article  Google Scholar 

  45. Shukri, M. M., Alan, C., & Noorzuraini, R. S. (2011). Polyphenols and antioxidant activities of selected traditional vegetables. Journal of Tropical Agriculture and Food Science, 39, 69–83.

    Google Scholar 

  46. Alonso-Salces, R. M., Guillou, C., & Berrueta, L. A. (2009). Liquid chromatography coupled with ultraviolet absorbance detection, electrospray ionization, collision-induced dissociation and tandem mass spectrometry on a triple quadrupole for the on-line characterization of polyphenols and methylxanthines in green coffee beans. Rapid Communications in Mass Spectrometry, 23, 363–383. doi:10.1002/rcm.3884.

    Article  CAS  Google Scholar 

  47. Jaiswal, R., Deshpande, S., & Kuhnert, N. (2011). Profiling the chlorogenic acids of Rudbeckia hirta, Helianthus tuberosus, Carlina acaulis and Symphyotrichum novae-angliae leaves by LC-MSn. Phytochemical Analysis, 22, 432–441. doi:10.1002/pca.1299.

    Article  CAS  Google Scholar 

  48. Satake, T., Kamiya, K., An, Y., Oishi Nee Taka, T., & Yamamoto, J. (2007). The anti-thrombotic active constituents from Centella asiatica. Biological and Pharmaceutical Bulletin, 30, 935–40. doi:10.1248/bpb.30.935.

    Article  CAS  Google Scholar 

  49. Plazonić, A., Bucar, F., Maleŝ, Z., Mornar, A., Nigović, B., & Kujundẑić, N. (2009). Identification and quantification of flavonoids and phenolic acids in burr parsley (Caucalis platycarpos L.), using high-performance liquid chromatography with diode array detection and electrospray ionization mass spectrometry. Molecules, 14, 2466–2490. doi:10.3390/molecules14072466.

    Article  Google Scholar 

  50. Nandutu, A. M., Clifford, M., & Howell, N. Z. (2007). Analysis of phenolic compounds in Ugandan sweet potato varieties (NSP, SPK and TZ). African Journal of Biochemistry Research, 1, 29–36.

    Google Scholar 

  51. Jaiswal, R., Patras, M. A., Eravuchira, P. J., & Kuhnert, N. (2010). Profile and characterization of the chlorogenic acids in green Robusta coffee beans by LC-MSn: identification of seven new classes of compounds. Journal of Agricultural and Food Chemistry, 58, 8722–8737. doi:10.1021/jf1014457.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the South African National Research Foundation and the University of Johannesburg for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Dubery.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Figure S1

Multivariate data analysis of the ESI negative data, showing the orthogonal projection to latent structure-discriminant analysis (OPLS-DA) generated from SA-treated C. asiatica cells incubated for 24 h. Scores plot (A) and S-plot (B) comparing the non-treated cells vs. the 100-μM SA treatment and the scores plot (C) and S-plot (D) comparing the non-treated cells vs. the 200-μM SA treatment. The mass ions in the upper right quadrant of the S-plot are positively correlated to the SA treatment whilst the ions in the lower quadrant are negatively related to the treatment. (GIF 517 kb)

High resolution image (TIF 304 kb)

Figure S2

UHPLC-QTOF-MS fragmentation spectra. Showing (A) trans-5-feruloylquinic acid, (B) 3,5 di-caffeoylquinic acid, (C) irbic acid (3,5-O-dicaffeoyl-4-O-malonilquinic acid) and (D) 3-caffeoyl, 5-feruloylquinic acid. (GIF 47 kb)

High-resolution image (TIF 402 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ncube, E.N., Steenkamp, P.A., Madala, N.E. et al. Chlorogenic Acids Biosynthesis in Centella asiatica Cells Is not Stimulated by Salicylic Acid Manipulation. Appl Biochem Biotechnol 179, 685–696 (2016). https://doi.org/10.1007/s12010-016-2024-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2024-9

Keywords

Navigation