Log in

Finite element analysis and experimental investigation in incremental sheet metal forming of composite matrix of Grade-V titanium

  • OriginalPaper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

The single point incremental forming (SPIF) method is well-suited to meet the demands of the biomedical and aerospace sectors and a wide range of consumer preferences due to its notable attributes. The forming time and corrosion behaviour of the SPIF process using a composite matrix sheet of Ti-6Al-4 V were examined in this study. This paper also simulates a truncated conical, hemisphere, and hyperbolic geometry using finite element analysis and founds compressive residual stresses in a truncated conical shape. The effects of various process parameters, i.e. sheet thickness, tool diameter, spindle speed, step size, feed rate, and wall angle on these aspects were examined to optimize parameter levels to achieve the lowest forming time with the aid of the design of experiments (DOE) using Taguchi analysis. The tool diameter, sheet thickness, and incremental depth are the three most significant parameters that have the most effects on the forming time, according to the analysis’s results. The forming time is predicted using an artificial neural network (ANN). ANN anticipates the forming time with 98% accuracy. A salt spray tester was used in the present study for the observation of corrosion behaviour at different time intervals. It was found that there was no white rust or no red rust after multiple intervals. Based on the corrosion behaviour shown in this study, it can be suggested that composite matrix grade-V titanium sheet material is suitable for biomedical and aerospace applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Pathak, J.: A brief review of incremental sheet metal forming. Int. J. Latest Eng. Manag. Res. 02(03), 35–43 (2017).

  2. Technology, M.: Advances in Material Forming. (2007). https://doi.org/10.1007/978-2-287-72143-4

  3. Jeswiet, J., Micari, F., Hirt, G., Bramley, A., Duflou, J., Allwood, J.: Asymmetric single point incremental forming of sheet metal. CIRP Ann. - Manuf. Technol. 54(2), 88–114 (2005). https://doi.org/10.1016/s0007-8506(07)60021-3

    Article  Google Scholar 

  4. McAnulty, T., Jeswiet, J., Doolan, M.: Formability in single point incremental forming: A comparative analysis of the state of the art. CIRP J. Manuf. Sci. Technol. 16, 43–54 (2017). https://doi.org/10.1016/j.cirpj.2016.07.003

    Article  Google Scholar 

  5. Bhattacharya, A., Maneesh, K., Venkata Reddy, N., Cao, J.: Formability and surface finish studies in single point incremental forming. J. Manuf. Sci. Eng. Trans. ASME. 133(6), 1–7 (2011). https://doi.org/10.1115/1.4005458

    Article  Google Scholar 

  6. Bagudanch, I., Centeno, G., Vallellano, C., Garcia-Romeu, M.L.: Forming force in single point Incremental forming under different bending conditions. Procedia Eng. 63, 354–360 (2013). https://doi.org/10.1016/j.proeng.2013.08.207

    Article  Google Scholar 

  7. Oraon, M., Mandal, S., Sharma, V.: Investigation into the process parameter of single point incremental forming (SPIF), Mater. Today Proc, vol. 33, pp. 5218–5221, (2020). https://doi.org/10.1016/j.matpr.2020.02.922

  8. Gulati, V., Aryal, A., Katyal, P., Goswami, A.: Process parameters optimization in single point Incremental Forming. J. Inst. Eng. Ser. C. 97(2), 185–193 (2016). https://doi.org/10.1007/s40032-015-0203-z

    Article  Google Scholar 

  9. Kajal, G., Tyagi, M.R., Kumar, G.: A review on the effect of residual stresses in incremental sheet metal forming used in automotive and medical sectors. Mater. Today Proc. (2022). https://doi.org/10.1016/j.matpr.2022.11.235

    Article  Google Scholar 

  10. Sbayti, M., Ghiotti, A., Bahloul, R., Belhadjsalah, H., Bruschi, S.: Finite element analysis of hot single point incremental forming of hip prostheses. MATEC Web Conf. 80 (2016). https://doi.org/10.1051/matecconf/20168014006

  11. Salihu, S.A., Suleiman, Y.I., Eyinavi, A.I.: Classification, Properties and Applications of titanium and its alloys used in automotive industry-A review. Am. J. Eng. Res. 4(8), 92–98 (2019). [Online]. Available: www.ajer.org

    Google Scholar 

  12. Gupta, P., Jeswiet, J.: Manufacture of an aerospace component by single point incremental forming. Procedia Manuf. 29, 112–119 (2019). https://doi.org/10.1016/j.promfg.2019.02.113

    Article  Google Scholar 

  13. Miller, W.S., Zhuang, L., Bottema, J., Wittebrood, A.J., De Smet, P.: Recent development in aluminium alloys for the automotive industry, 280, pp. 37–49, (2000)

  14. Wang, Y., et al.: Effect of retrogression treatments on microstructure, hardness and corrosion behaviors of aluminum alloy 7085. J. Alloys Compd. 814 (Jan. 2020). https://doi.org/10.1016/j.jallcom.2019.152264

  15. Mohanty, S., Arivarasu, M., Arivazhagan, N., Phani Prabhakar, K.V.: The residual stress distribution of CO2 laser beam welded AISI 316 austenitic stainless steel and the effect of vibratory stress relief. Mater. Sci. Eng. A. 703, 227–235 (Aug. 2017). https://doi.org/10.1016/j.msea.2017.07.066

  16. Xu, S., Zhu, C., Kamado, S., Oh-Ishi, K., Qin, Y.: Dynamic recrystallization behavior of as-cast AZ91 magnesium alloy during hot compressive. J. Mater. Res. Technol. 18, 5116–5125 (May 2022). https://doi.org/10.1016/j.jmrt.2022.04.147

  17. Boyer, R.R., Briggs, R.D.: The use of β titanium alloys in the aerospace industry. J. Mater. Eng. Perform. 14(6), 681–685 (2005). https://doi.org/10.1361/105994905X75448

    Article  Google Scholar 

  18. Spilker, H.G., Jänsch-Kaiser, G., Pérez, N.: Titanium and titanium alloys. Corros. Handb. p NA-NA. (2012). https://doi.org/10.1002/9783527610433.chb281042

    Article  Google Scholar 

  19. Zhang, J., Li, X., Xu, D., Yang, R.: Recent progress in the simulation of microstructure evolution in titanium alloys. Prog Nat. Sci. Mater. Int. 29(3), 295–304 (2019). https://doi.org/10.1016/j.pnsc.2019.05.006

    Article  Google Scholar 

  20. Saidi, B., Giraud Moreau, L., Mhemed, S., Cherouat, A., Adragna, P.A., Nasri, R.: Hot incremental forming of titanium human skull prosthesis by using cartridge heaters: A reverse engineering approach. Int. J. Adv. Manuf. Technol. 101, 1–4 (2019). https://doi.org/10.1007/s00170-018-2975-9

    Article  Google Scholar 

  21. Kumar, A., Singh, V., Nayak, S., Kumar, A., Tyagi, A., Sharma, A.: Impact of process variables on surface roughness in negative incremental forming process, Mater. Today Proc, vol. 50, no. xxxx, pp. 930–934, (2021). https://doi.org/10.1016/j.matpr.2021.06.324

  22. Sekar, K.S.V., Kumar, M.P.: Finite element simulations of Ti6Al4V titanium alloy machining to assess material model parameters of the Johnson-Cook constitutive equation. J. Brazilian Soc. Mech. Sci. Eng. 33(2), 203–211 (2011). https://doi.org/10.1590/S1678-58782011000200012

    Article  Google Scholar 

  23. Kotkunde, N., Gupta, A.K.: Analysis of Forming Limit Diagram for Ti-6Al-4V Alloy, Mater. Today Proc, vol. 2, no. 4–5, pp. 3762–3769, (2015). https://doi.org/10.1016/j.matpr.2015.07.178

  24. Wang, J., Li, L., Jiang, H.: Effects of forming parameters on temperature in frictional stir incremental sheet forming. J. Mech. Sci. Technol. 30(5), 2163–2169 (2016). https://doi.org/10.1007/s12206-016-0423-z

    Article  Google Scholar 

  25. Guan, R.G., Je, Y.T., Zhao, Z.Y., Lee, C.S.: Effect of microstructure on deformation behavior of Ti-6Al-4V alloy during compressing process. Mater. Des. 36, 796–803 (2012). https://doi.org/10.1016/j.matdes.2011.11.057

    Article  Google Scholar 

  26. Reddy, A.C.: Numerical and Experimental Investigation of single point incremental forming process for phosphorus bronze Hemispherical cups. Int. J. Sci. Eng. Res. 8(1), 957–963 (2017)

    Google Scholar 

  27. Nguyen, D.T., Park, J.G., Lee, H.J., Kim, Y.S.: Finite element method study of incremental sheet forming for complex shape and its improvement, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf, vol. 224, no. 6, pp. 913–924, (2010). https://doi.org/10.1243/09544054JEM1825

  28. **njian, L., Guigen, Y., Zhimin, W., Shifeng, X., Yi, Z.: Optimization on the Johnson-Cook parameters of Ti-6Al-4V used for high speed cutting simulation. J. Phys. Conf. Ser. 1653(1) (2020). https://doi.org/10.1088/1742-6596/1653/1/012034

  29. Liu, Z.B., Le Li, Y., Daniel, B., Meehan, P.: Taguchi optimization of process parameters for forming time in incremental sheet forming process. Mater. Sci. Forum. 773–774 (2014). https://doi.org/10.4028/www.scientific.net/MSF.773-774.137

  30. Murugesan, M., Yu, J.H., Jung, K.S., Cho, S.M., Bhandari, K.S., Lee, C.W.: Optimization of forming parameters in incremental sheet forming of AA3003-H18 sheets using Taguchi Method. Mater. (Basel). 15(4), 1–16 (2022). https://doi.org/10.3390/ma15041458

    Article  Google Scholar 

  31. Qayyum Khan, A., Ahmad Awan, H., Rasul, M., Ahmad Siddiqi, Z., Pimanmas, A.: Optimized artificial neural network model for accurate prediction of compressive strength of normal and high strength concrete. Clean. Mater. 10, 100211 (2023). https://doi.org/10.1016/j.clema.2023.100211

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianender Kajal.

Ethics declarations

Competing interests

The authors assert that they do not possess any acknowledged conflicting financial interests or personal relationships that may have appeared to impact the findings reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kajal, G., Tyagi, M.R. & Kumar, G. Finite element analysis and experimental investigation in incremental sheet metal forming of composite matrix of Grade-V titanium. Int J Interact Des Manuf (2024). https://doi.org/10.1007/s12008-024-01992-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12008-024-01992-y

Keywords

Navigation