Log in

Modelling and simultaneous optimization of environmental, economic, and technological factors in machining

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

In the current era, manufacturing industries are facing multifaceted challenges related to increasing environmental awareness, decreasing economic gains, and technology obsolesce. These challenges become more apparent during the machining of difficult-to-machine materials due to high tool wear rates, high cutting forces, undesirable surface quality, high tool replacement costs, and a stagnating productivity. The developed approach aims at improving environmental, economic, and technological factors by optimizing four performance characteristics–energy demand, surface roughness, tool wear, and material removal rate during the milling of H13 tool steel by using an integrated artificial neural network and genetic algorithm. The proposed methodology provides Pareto solutions for minimum energy demand, surface roughness, & tool wear, and maximum material removal rate. The novelty of this work lies in generating Pareto fronts for analyzing conflicting responses, and determining preferred solutions without sacrificing environmental, technological, and economic considerations, simultaneously. The present work will be significant to practitioners in adopting better management strategies and simultaneously dealing with these challenges. The potential of the research lies in directly integrating the proposed optimization module with the machine tool system to serve as an online tool for machine tool process optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated and/or analysed during the current study are available upon reasonable request from the corresponding author.

Abbreviations

AMGA:

Archive-based micro-genetic algorithm

ANN:

Artificial neural network

CNC:

Computer numerical control

DFA:

Desirability function approach

ED:

Energy demand

GA:

Genetic algorithm

GRA:

Grey relational analysis

HRC:

Hardness Rockwell C

LDPS:

Linear decreasing particle swarm

AHP:

Analytic hierarchy process

LM:

Levenberg Marquardt

MAPE:

Mean absolute prediction error

MQL:

Minimum quantity lubrication

MRR:

Material removal rate

PCA:

Principal component analysis

Ra :

Average surface roughness

Rz :

Mean roughness depth

RSM:

Response surface method

TW:

Tool wear

References

  1. Kara, S., Li, W.: Unit process energy consumption models for material removal processes. CIRP Ann. 60, 37–40 (2011). https://doi.org/10.1016/J.CIRP.2011.03.018

    Article  Google Scholar 

  2. Brillinger, M., Wuwer, M., Abdul Hadi, M., Haas, F.: Energy prediction for CNC machining with machine learning. CIRP J. Manuf. Sci. Technol. 35, 715–723 (2021). https://doi.org/10.1016/J.CIRPJ.2021.07.014

    Article  Google Scholar 

  3. Newman, S.T., Nassehi, A., Imani-Asrai, R., Dhokia, V.: Energy efficient process planning for CNC machining. CIRP J. Manuf. Sci. Technol. 5, 127–136 (2012). https://doi.org/10.1016/j.cirpj.2012.03.007

    Article  Google Scholar 

  4. Wang, C.Y., **e, Y.X., Qin, Z., Lin, H.S., Yuan, Y.H., Wang, Q.M.: Wear and breakage of TiAlN- and TiSiN-coated carbide tools during high-speed milling of hardened steel. Wear 336–337, 29–42 (2015). https://doi.org/10.1016/j.wear.2015.04.018

    Article  CAS  Google Scholar 

  5. Vijayaraghavan, A., Dornfeld, D.: Manufacturing Technology Automated energy monitoring of machine tools. CIRP Ann. Manuf. Technol. 59, 21–24 (2010). https://doi.org/10.1016/j.cirp.2010.03.042

    Article  Google Scholar 

  6. Shen, N., Cao, Y., Li, J., Zhu, K., Zhao, C.: A practical energy consumption prediction method for CNC machine tools: cases of its implementation. Int. J. Adv. Manuf. Technol. 99, 2915–2927 (2018). https://doi.org/10.1007/s00170-018-2550-4

    Article  Google Scholar 

  7. Sangwan, K.S., Saxena, S., Kant, G.: Optimization of machining parameters to minimize surface roughness using integrated ANN-GA approach. Procedia CIRP. 29, 305–310 (2015). https://doi.org/10.1016/j.procir.2015.02.002

    Article  Google Scholar 

  8. Drouillet, C., Karandikar, J., Nath, C., Journeaux, A., El, M., Kurfess, T.: Tool life predictions in milling using spindle power with the neural network technique. J. Manuf. Process. 22, 161–168 (2016). https://doi.org/10.1016/j.jmapro.2016.03.010

    Article  Google Scholar 

  9. Zhu, K., Zhang, Y.: A generic tool wear model and its application to force modeling and wear monitoring in high speed milling. Mech. Syst. Signal Process. 115, 147–161 (2019). https://doi.org/10.1016/j.ymssp.2018.05.045

    Article  ADS  Google Scholar 

  10. Malakizadi, A., Shi, B., Hoier, P., Attia, H., Krajnik, P.: Physics-based approach for predicting dissolution - diffusion tool wear in machining. CIRP Ann. Manuf. Technol. 69, 81–84 (2020). https://doi.org/10.1016/j.cirp.2020.04.040

    Article  Google Scholar 

  11. Jawahir, I.S., Brinksmeier, E., M’Saoubi, R., Aspinwall, D.K., Outeiro, J.C., Meyer, D., Umbrello, D., Jayal, A.D.: Surface integrity in material removal processes: recent advances. CIRP Ann. 60, 603–626 (2011). https://doi.org/10.1016/j.cirp.2011.05.002

    Article  Google Scholar 

  12. Rotella, G., Dillon, O.W., Umbrello, D., Settineri, L., Jawahir, I.S.: The effects of cooling conditions on surface integrity in machining of Ti6Al4V alloy. Int. J. Adv. Manuf. Technol. 71, 47–55 (2014). https://doi.org/10.1007/s00170-013-5477-9

    Article  Google Scholar 

  13. Jawahir, I.S., Wang, X.: Development of hybrid predictive models and optimization techniques for machining operations. J. Mater. Process. Technol. 185, 46–59 (2007). https://doi.org/10.1016/J.JMATPROTEC.2006.03.133

    Article  CAS  Google Scholar 

  14. Qu, S., Zhao, J., Wang, T.: Experimental study and machining parameter optimization in milling thin-walled plates based on NSGA-II. Int. J. Adv. Manuf. Technol. 89, 2399–2409 (2017). https://doi.org/10.1007/s00170-016-9265-1

    Article  Google Scholar 

  15. Camposeco-Negrete, C.: Optimization of cutting parameters using Response Surface Method for minimizing energy consumption and maximizing cutting quality in turning of AISI 6061 T6 aluminum. J. Clean. Prod. 91, 109–117 (2015). https://doi.org/10.1016/j.jclepro.2014.12.017

    Article  CAS  Google Scholar 

  16. Gupta, A., Shah, R., Dave, H., Khanna, N.: Multi-objective optimization of surface parameters such as concavity, straightness and roughness in milling process. Mater. Today Proc. 5, 5296–5302 (2018). https://doi.org/10.1016/j.matpr.2017.12.113

    Article  Google Scholar 

  17. Han, F., Li, L., Cai, W., Li, C., Deng, X., Sutherland, J.W.: Parameters optimization considering the trade-off between cutting power and MRR based on linear decreasing particle swarm algorithm in milling. J. Clean. Prod. (2020). https://doi.org/10.1016/j.jclepro.2020.121388

    Article  Google Scholar 

  18. Sangwan, K.S., Sihag, N.: Multi-objective optimization for energy efficient machining with high productivity and quality for a turning process. Procedia CIRP 80, 67–72 (2019). https://doi.org/10.1016/j.procir.2019.01.022

    Article  Google Scholar 

  19. Kant, G., Sangwan, K.S.: Prediction and optimization of machining parameters for minimizing power consumption and surface roughness in machining. J. Clean. Prod. 83, 151–164 (2014). https://doi.org/10.1016/j.jclepro.2014.07.073

    Article  Google Scholar 

  20. Shokrani, A., Dhokia, V., Newman, S.T.: International journal of machine tools & manufacture environmentally conscious machining of difficult-to-machine materials with regard to cutting fluids. Int. J. Mach. Tools Manuf 57, 83–101 (2012). https://doi.org/10.1016/j.ijmachtools.2012.02.002

    Article  Google Scholar 

  21. Kene, A.P., Choudhury, S.K.: Analytical modeling of tool health monitoring system using multiple sensor data fusion approach in hard machining. Measurement 145, 118–129 (2019). https://doi.org/10.1016/j.measurement.2019.05.062

    Article  ADS  Google Scholar 

  22. Denkena, B., Abele, E., Brecher, C., Dittrich, M.A., Kara, S., Mori, M.: Energy efficient machine tools. CIRP Ann. 69, 646–667 (2020). https://doi.org/10.1016/j.cirp.2020.05.008

    Article  Google Scholar 

  23. Phokobye, S.N., Daniyan, I.A., Tlhabadira, I., Masu, L., VanStaden, L.R.: Model design and optimization of carbide milling cutter for milling operation of M200 tool steel. Procedia CIRP. 84, 954–959 (2019). https://doi.org/10.1016/j.procir.2019.04.300

    Article  Google Scholar 

  24. Bonilla Hernández, A.E., Beno, T., Repo, J., Wretland, A.: Integrated optimization model for cutting data selection based on maximal MRR and tool utilization in continuous machining operations. CIRP J. Manuf. Sci. Technol. 13, 46–50 (2016). https://doi.org/10.1016/J.CIRPJ.2016.02.002

    Article  Google Scholar 

  25. Ringgaard, K., Mohammadi, Y., Merrild, C., Balling, O., Ahmadi, K.: Optimization of material removal rate in milling of thin-walled structures using penalty cost function. Int. J. Mach. Tools Manuf. 145, 103430 (2019). https://doi.org/10.1016/j.ijmachtools.2019.103430

    Article  Google Scholar 

  26. Wu, P., He, Y., Li, Y., He, J., Liu, X., Wang, Y.: Multi-objective optimisation of machining process parameters using deep learning-based data-driven genetic algorithm and TOPSIS. J. Manuf. Syst. 64, 40–52 (2022). https://doi.org/10.1016/J.JMSY.2022.05.016

    Article  Google Scholar 

  27. Kumar, R., Singh, S., Bilga, P.S., Jatin, J., Singh, S., Singh, M.-L., Scutaru, C.I.P.: Revealing the benefits of entropy weights method for multi-objective optimization in machining operations: a critical review. J. Mater. Res. Technol. 10, 1471–1492 (2021). https://doi.org/10.1016/j.jmrt.2020.12.114

    Article  Google Scholar 

  28. Hanafi, I., Khamlichi, A., Cabrera, F.M., Almansa, E., Jabbouri, A.: Optimization of cutting conditions for sustainable machining of PEEK-CF30 using TiN tools. J. Clean. Prod. 33, 1–9 (2012). https://doi.org/10.1016/j.jclepro.2012.05.005

    Article  CAS  Google Scholar 

  29. Rajemi, M.F., Mativenga, P.T., Aramcharoen, A.: Sustainable machining: selection of optimum turning conditions based on minimum energy considerations. J. Clean. Prod. 18, 1059–1065 (2010). https://doi.org/10.1016/J.JCLEPRO.2010.01.025

    Article  Google Scholar 

  30. Muaz, M., Choudhury, S.K.: Experimental investigations and multi-objective optimization of MQL-assisted milling process for finishing of AISI 4340 steel. Measurement (Lond). 138, 557–569 (2019). https://doi.org/10.1016/j.measurement.2019.02.048

    Article  ADS  Google Scholar 

  31. Fountas, N., et al.: Single and multi-objective optimization methodologies in CNC machining. Statis. Comput. Tech. Manuf. (2012). https://doi.org/10.1007/978-3-642-25859-6_5

    Article  Google Scholar 

  32. Langbauer, R., Nunner, G., Zmek, T., Klarner, J., Prieler, R., Hochenauer, C.: Development of an artificial neural network (ANN) model to predict the temperature of hot-rolled steel pipes. Adv. Ind. Manuf. Eng. 5, 100090 (2022). https://doi.org/10.1016/j.aime.2022.100090

    Article  Google Scholar 

  33. Leone, C., D’Addona, D., Teti, R.: Tool wear modelling through regression analysis and intelligent methods for nickel base alloy machining. CIRP J. Manuf. Sci. Technol. 4, 327–331 (2011). https://doi.org/10.1016/J.CIRPJ.2011.03.009

    Article  Google Scholar 

  34. Wang, Q., Liu, F., Wang, X.: Multi-objective optimization of machining parameters considering energy consumption. Int. J. Adv. Manuf. Technol. 71, 1133–1142 (2014). https://doi.org/10.1007/s00170-013-5547-z

    Article  Google Scholar 

  35. Winter, M., Li, W., Kara, S., Herrmann, C.: Determining optimal process parameters to increase the eco-efficiency of grinding processes. J. Clean. Prod. 66, 644–654 (2014). https://doi.org/10.1016/j.jclepro.2013.10.031

    Article  Google Scholar 

  36. Bagaber, S.A., Yusoff, A.R.: Multi-objective optimization of cutting parameters to minimize power consumption in dry turning of stainless steel 316. J. Clean. Prod. 157, 30–46 (2017). https://doi.org/10.1016/j.jclepro.2017.03.231

    Article  CAS  Google Scholar 

  37. Yan, J., Li, L.: Multi-objective optimization of milling parameters-the trade-offs between energy, production rate and cutting quality. J. Clean. Prod. 52, 462–471 (2013). https://doi.org/10.1016/j.jclepro.2013.02.030

    Article  Google Scholar 

  38. Nguyen, T.T.: Prediction and optimization of machining energy, surface roughness, and production rate in SKD61 milling. Measurement (Lond). 136, 525–544 (2019). https://doi.org/10.1016/j.measurement.2019.01.009

    Article  ADS  Google Scholar 

  39. Hegab, H., Salem, A., Rahnamayan, S., Kishawy, H.A.: Analysis, modeling, and multi-objective optimization of machining Inconel 718 with nano-additives based minimum quantity coolant. Appl. Soft Comput. 108, 107416 (2021). https://doi.org/10.1016/j.asoc.2021.107416

    Article  Google Scholar 

  40. Su, Y., Li, C., Zhao, G., Li, C., Zhao, G.: Prediction models for specific energy consumption of machine tools and surface roughness based on cutting parameters and tool wear. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 235, 1225–1234 (2021). https://doi.org/10.1177/0954405420971064

    Article  Google Scholar 

  41. Yuce, B.E., Nielsen, P.V., Wargocki, P.: The use of Taguchi, ANOVA, and GRA methods to optimize CFD analyses of ventilation performance in buildings. Build Environ. 225, 109587 (2022). https://doi.org/10.1016/j.buildenv.2022.109587

    Article  Google Scholar 

  42. Baş, D., Boyacı, İH.: Modeling and optimization I: Usability of response surface methodology. J. Food Eng. 78, 836–845 (2007). https://doi.org/10.1016/j.jfoodeng.2005.11.024

    Article  CAS  Google Scholar 

  43. Yi, Q., Li, C., Tang, Y., Chen, X.: Multi-objective parameter optimization of CNC machining for low carbon manufacturing. J. Clean. Prod. 95, 256–264 (2015). https://doi.org/10.1016/j.jclepro.2015.02.076

    Article  Google Scholar 

  44. Zhang, X., Yu, T., Dai, Y., Qu, S., Zhao, J.: Energy consumption considering tool wear and optimization of cutting parameters in micro milling process. Int. J. Mech. Sci. (2020). https://doi.org/10.1016/j.ijmecsci.2020.105628

    Article  PubMed  Google Scholar 

  45. Li, Y., Zheng, G., Cheng, X., Yang, X., Xu, R., Zhang, H.: Cutting performance evaluation of the coated tools in high-speed milling of AISI 4340 steel. Materials (2019). https://doi.org/10.3390/ma12193266

    Article  PubMed  PubMed Central  Google Scholar 

  46. A. Petrilin, Which is better: dry or wet machining? https://www.ctemag.com/news/articles/which-better-dry-or-wet-machining (Accessed 9 February 2022).

  47. Yan, W., Wong, Y.S., Lee, K.S., Ning, T.: An investigation of indices based on milling force for tool wear in milling. J. Mater. Process. Technol. 89–90, 245–253 (1999). https://doi.org/10.1016/S0924-0136(99)00143-0

    Article  Google Scholar 

  48. Sagai Francis Britto, A., Edwin Raj, R., Carolin Mabel, M.: Prediction and optimization of mechanical strength of diffusion bonds using integrated ANN-GA approach with process variables and metallographic characteristics. J. Manuf. Process. 32, 828–838 (2018). https://doi.org/10.1016/J.JMAPRO.2018.04.015

    Article  Google Scholar 

  49. Palanisamy, P., Rajendran, I., Shanmugasundaram, S.: Prediction of tool wear using regression and ANN models in end-milling operation. Int. J. Adv. Manuf. Technol. 37, 29–41 (2008). https://doi.org/10.1007/s00170-007-0948-5

    Article  Google Scholar 

  50. Peng, A., **ao, X., Yue, R.: Process parameter optimization for fused deposition modeling using response surface methodology combined with fuzzy inference system. Int. J. Adv. Manuf. Technol. 73, 87–100 (2014). https://doi.org/10.1007/s00170-014-5796-5

    Article  Google Scholar 

  51. Deb, K., Datta, R.: Hybrid evolutionary multi-objective optimization and analysis of machining operations. Eng. Optim. 44, 685–706 (2012). https://doi.org/10.1080/0305215X.2011.604316

    Article  MathSciNet  Google Scholar 

  52. Li, Y., Jia, M., Han, X., Bai, X.S.: Towards a comprehensive optimization of engine efficiency and emissions by coupling artificial neural network (ANN) with genetic algorithm (GA). Energy (2021). https://doi.org/10.1016/j.energy.2021.120331

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuldip Singh Sangwan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sangwan, K.S., Kumar, R., Herrmann, C. et al. Modelling and simultaneous optimization of environmental, economic, and technological factors in machining. Int J Interact Des Manuf 18, 859–877 (2024). https://doi.org/10.1007/s12008-023-01569-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-023-01569-1

Keywords

Navigation