Log in

Robust superhydrophobic composite coating using h-BN/MWCNT via supercritical fluid processing

  • Brief Communication
  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

We employed a quick method of supercritical fluid processing (SCF) to develop superhydrophobic composite coatings by combining h-boron nitride (h-BN) and multiwalled carbon nanotubes (MWCNT) to create hierarchical nanostructures on fiber-reinforced polymer (FRP) sheets. The prepared BN-MWCNT composite coating demonstrated a high-water contact angle of 169.4°. At high magnification, the surface morphologies of the composite coatings revealed that MWCNT was completely covered by BN nanosheets in all directions. The presence of aligned nano- and microsurface roughness in the coating was investigated using an atomic force microscope (AFM). X-ray diffraction (XRD) study revealed that h-BN nanosheets had a marked effect on the phase separation of MWCNT. The remarkable structural stability of the obtained BN-MWCNT superhydrophobic composite coating was validated by Raman spectroscopy. This study found a cost-effective method to create BN-MWCNT composites by applying the SCF approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Gao, T, et al. “Boron Nitride/Reduced Graphene Oxide Nanocomposites as Supercapacitors Electrodes.” Mater. Lett., 159 54–57 (2015)

    Article  CAS  Google Scholar 

  2. Sajjad, M, Feng, P, “Study the Gas Sensing Properties of Boron Nitride Nanosheets.” Mater. Res. Bull., 49 35–38 (2014)

    Article  CAS  Google Scholar 

  3. Panchal, MB, Upadhyay, SH, “Single Walled Boron Nitride Nanotube-Based Biosensor: An Atomistic Finite Element Modelling Approach.” IET Nanobiotechnol., 8 149–156 (2014)

    Article  CAS  Google Scholar 

  4. Zhao, J, Chen, Z, “Carbon-Doped Boron Nitride Nanosheet: An Efficient Metal-Free Electrocatalyst for the Oxygen Reduction Reaction.” J. Phys. Chem. C, 119 26348–26354 (2015)

    Article  CAS  Google Scholar 

  5. Uosaki, K, et al. “Boron Nitride Nanosheet on Gold as an Electrocatalyst for Oxygen Reduction Reaction: Theoretical Suggestion and Experimental Proof.” J. Am. Chem. Soc., 136 6542–6545 (2014)

    Article  CAS  Google Scholar 

  6. Chen, X, Chang, J, Yan, H, **a, D, “Boron Nitride Nanocages as High Activity Electrocatalysts for Oxygen Reduction Reaction: Synergistic Catalysis by Dual Active Sites.” J. Phys. Chem. C, 120 28912–28916 (2016)

    Article  CAS  Google Scholar 

  7. Pakdel, A, Zhi, C, Bando, Y, Nakayama, T, Golberg, D, “Supporting Information Boron Nitride Nanosheet Coatings with Controllable Water Repellency.” ACS Nano, 5 6507–6515 (2011)

    Article  CAS  Google Scholar 

  8. Watanabe, K, Taniguchi, T, Kanda, H, “Direct-Bandgap Properties and Evidence for Ultraviolet Lasing of Hexagonal Boron Nitride Single Crystal.” Nat. Mater., 3 404–409 (2004)

    Article  CAS  Google Scholar 

  9. Lee, C, et al. “Frictional Characteristics of Atomically Thin Sheets.” Science, 328 (5974) 76–80 (2010)

    Article  CAS  Google Scholar 

  10. Golberg, D, Bando, Y, Huang, Y, Terao, T, Mitome, M, Tang, C, Zhi, C, “Boron Nitride Nanotubes and Nanowires.” ACS Nano, 4 2979–2993 (2010)

    Article  CAS  Google Scholar 

  11. Song, L, et al. “Large Scale Growth and Characterization of Atomic Hexagonal Boron Nitride Layers.” Nano Lett., 10 3209–3215 (2010)

    Article  CAS  Google Scholar 

  12. Lin, Y, Williams, TV, Connell, JW, “Soluble, Exfoliated Hexagonal Boron Nitride Nanosheets.” J. Phys. Chem. Lett., 1 277–283 (2010)

    Article  Google Scholar 

  13. Zeng, H, et al. “‘White Graphenes’: Boron Nitride Nanoribbons via Boron Nitride Nanotube Unwrap**.” Nano Lett., 10 5049–5055 (2010)

    Article  CAS  Google Scholar 

  14. Nandiyanto, ABD, Kaihatsu, Y, Iskandar, F, Okuyama, K, “Rapid Synthesis of a BN/CNT Composite Particle via Spray Routes Using Ferrocene/Ethanol as a Catalyst/Carbon Source.” Mater. Lett., 63 1847–1850 (2009)

    Article  CAS  Google Scholar 

  15. Mohai, I, et al. “Formation of Thin Boron Nitride Coating on Multiwall Carbon Nanotube Surfaces.” Diam. Relat. Mater., 20 227–231 (2011)

    Article  CAS  Google Scholar 

  16. Wang, WL, et al. “Facile Synthesis of Boron Nitride Coating on Carbon Nanotubes.” Mater. Chem. Phys., 122 129–132 (2010)

    Article  CAS  Google Scholar 

  17. Li, GX, et al. “Preparation of Transparent BN Films with Superhydrophobic Surface.” Appl. Surf. Sci., 254 5299–5303 (2008)

    Article  CAS  Google Scholar 

  18. Feng, L, et al. “Super-Hydrophobic Surfaces: From Natural to Artificial.” Adv. Mater., 14 1857–1860 (2002)

    Article  CAS  Google Scholar 

  19. Li, X, et al. “A Study on Superhydrophobic Coating in Anti-icing of Glass/Porcelain Insulator.” J. Sol-Gel Sci. Technol., 69 441–447 (2014)

    Article  Google Scholar 

  20. Rajiv, S, Kumaran, S, Sathish, M, “Long-Term-Durable Anti-Icing Superhydrophobic Composite Coatings.” J. Appl. Polym. Sci., 136 47059 (2019)

    Article  Google Scholar 

  21. Neinhuis, C, Barthlott, W, “Characterization and Distribution of Water-repellent, Self-cleaning Plant Surfaces.” Ann. Bot., 79 667–677 (1997)

    Article  Google Scholar 

  22. Nyström, D, et al. “Superhydrophobic and Self-Cleaning Bio-Fiber Surfaces via ATRP and Subsequent Postfunctionalization.” ACS Appl. Mater. Interfaces, 1 816–823 (2009)

    Article  Google Scholar 

  23. Li, W, Kang, Z, “Fabrication of Corrosion Resistant Superhydrophobic Surface with Self-Cleaning Property on Magnesium Alloy and Its Mechanical Stability.” Surf. Coatings Technol., 253 205–213 (2014)

    Article  CAS  Google Scholar 

  24. Daniello, RJ, Waterhouse, NE, Rothstein, JP, “Drag Reduction in Turbulent Flows Over Superhydrophobic Surfaces.” Phys. Fluids, 21 085103 (2009)

    Article  Google Scholar 

  25. Subramanian, R, Shanmugam, K, Marappan, S, “Fabrication of Robust Superhydrophobic Coatings Using PTFE-MWCNT Nanocomposite: Supercritical Fluid Processing.” Surf. Interface Anal., 50 464–470 (2018)

    Article  CAS  Google Scholar 

  26. Hsu, CP, Chang, LY, Chiu, CW, Lee, PTC, Lin, JJ, “Facile Fabrication of Robust Superhydrophobic Epoxy Film with Polyamine Dispersed Carbon Nanotubes.” ACS Appl. Mater. Interfaces, 5 538–545 (2013)

    Article  CAS  Google Scholar 

  27. Wang, Z, Zuilhof, H, “Self-healing Superhydrophobic Fluoropolymer Brushes as Highly Protein-Repellent Coatings.” Langmuir, 32 6310–6318 (2016)

    Article  CAS  Google Scholar 

  28. Xue, C-H, Guo, X-J, Ma, J-Z, Jia, S-T, “Fabrication of Robust and Antifouling Superhydrophobic Surfaces via Surface-Initiated Atom Transfer Radical Polymerization.” ACS Appl. Mater. Interfaces, 7 8251–8259 (2015)

    Article  CAS  Google Scholar 

  29. Fan, Y, Chen, Z, Liang, J, Wang, Y, Chen, H, “Preparation of Superhydrophobic Films on Copper Substrate for Corrosion Protection.” Surf. Coatings Technol., 244 1–8 (2014)

    Article  CAS  Google Scholar 

  30. Wagner, T, Neinhuis, C, Barthlott, W, “Wettability and Contaminability of Insect Wings as a Function of Their Surface Sculptures.” Acta Zool., 77 213–225 (1996)

    Article  Google Scholar 

  31. Watson, GS, Cribb, BW, Watson, JA, “How Micro/Nanoarchitecture Facilitates Anti-Wetting: An Elegant Hierarchical Design on the Termite Wing.” ACS Nano, 4 129–136 (2010)

    Article  CAS  Google Scholar 

  32. Hu, H-MS, Watson, GS, Cribb, BW, Watson, JA, “Non-wetting Wings and Legs of the Cranefly Aided by Fine Structures of the Cuticle.” J. Exp. Biol., 214 915–920 (2011)

    Article  Google Scholar 

  33. Barthlott, W, Neinhuis, C, “Purity of the Sacred Lotus, or Escape from Contamination in Biological Surfaces.” Planta, 202 1–8 (1997)

    Article  CAS  Google Scholar 

  34. Liu, Y, Chen, X, **n, JH, “Hydrophobic Duck Feathers and Their Simulation on Textile Substrates for Water Repellent Treatment.” Bioinspir. Biomim., 3 046007 (2008)

    Article  Google Scholar 

  35. Bormashenko, E, Bormashenko, Y, Stein, T, Whyman, G, Bormashenko, E, “Why Do Pigeon Feathers Repel Water? Hydrophobicity of Pennae, Cassie-Baxter Wetting Hypothesis and Cassie-Wenzel Capillarity-Induced Wetting Transition.” J. Colloid Interface Sci., 311 212–216 (2007)

    Article  CAS  Google Scholar 

  36. Steele, A, et al. “Conformal ZnO Nanocomposite Coatings on Micro-Patterned Surfaces for Superhydrophobicity.” Thin Solid Films, 518 5426–5431 (2010)

    Article  CAS  Google Scholar 

  37. Zhou, H, “Fluoroalkyl Silane Modified Silicone Rubber/Nanoparticle Composite: A Super Durable, Robust Superhydrophobic Fabric Coating.” Adv. Mater., 24 (18) 2409–2412 (2012)

    Article  CAS  Google Scholar 

  38. Ding, X, Zhou, S, Gu, G, Wu, L, “A Facile and Large-Area Fabrication Method of Superhydrophobic Self-Cleaning Fluorinated Polysiloxane/TiO2 Nanocomposite Coatings with Long-Term Durability.” J. Mater. Chem., 21 6161–6164 (2011)

    Article  CAS  Google Scholar 

  39. Wang, H, Tang, L, Wu, X, Dai, W, Qiu, Y, “Fabrication and Anti-Frosting Performance of Super Hydrophobic Coating Based on Modified Nano-Sized Calcium Carbonate and Ordinary Polyacrylate.” Appl. Surf. Sci., 253 8818–8824 (2007)

    Article  CAS  Google Scholar 

  40. Tadanaga, K, Kitamuro, K, Matsuda, A, Minami, T, “Formation of Superhydrophobic Alumina Coating Films with High Transparency on Polymer Substrates by the Sol-Gel Method.” J. Sol-Gel Sci. Technol., 26 705–708 (2003)

    Article  CAS  Google Scholar 

  41. Honda, M, Oaki, Y, Imai, H, “Hydrophobic Inorganic—Organic Composite Nanosheets Based on Monolayers of Transition Metal Oxides.” Chem. Mater., 26 3579–3585 (2014)

    Article  CAS  Google Scholar 

  42. Thangasamy, P, Maruthapandian, V, Saraswathy, V, Sathish, M, “Supercritical Fluid Processing for the Synthesis of NiS2 Nanostructures as Efficient Electrocatalysts for Electrochemical Oxygen Evolution Reactions.” Catal. Sci. Technol., 7 (16) 3591–3597 (2017)

    Article  CAS  Google Scholar 

  43. Thangasamy, P, Partheeban, T, Sudanthiramoorthy, S, Sathish, M, “Enhanced Superhydrophobic Performance of BN-MoS2 Heterostructure Prepared via a Rapid One-Pot Superitical Fluid Processing.” Langmuir, 33 6159–6166 (2017)

    Article  CAS  Google Scholar 

  44. Rosca, ID, Watari, F, Uo, M, Akasaka, T, “Oxidation of Multiwalled Carbon Nanotubes by Nitric Acid.” Carbon N. Y., 43 3124–3131 (2005)

    Article  CAS  Google Scholar 

  45. Saleh, TA, “The Influence of Treatment Temperature on the Acidity of MWCNT Oxidized by HNO3 or a Mixture of HNO3/H2SO4.” Appl. Surf. Sci., 257 7746–7751 (2011)

    Article  CAS  Google Scholar 

  46. Wu, J, et al. “Raman Spectroscopy and Time-Resolved Photoluminescence of BN and BxCyNz Nanotubes.” Nano Lett., 4 647–650 (2004)

    Article  CAS  Google Scholar 

  47. Rao, AM, Richter, E, Bandow, S, Chase, B, Eklund, PC, Williams, KA, Dresselhaus, MS, “Diameter-Selective Raman Scattering from Vibrational Modes in Carbon Nanotubes.” Science, 275 (5297) 187–191 (1997)

    Article  CAS  Google Scholar 

  48. Dervishi, E, et al. “Thermally Controlled Synthesis of Single-Wall Carbon Nanotubes with Selective Diameters.” J. Mater. Chem., 19 3004 (2009)

    Article  CAS  Google Scholar 

  49. Kumar, R, Kumar, R, Tiwari, RS, “Growth Analysis and High-Yield Synthesis of Aligned-Stacked Branched Nitrogen-Doped Carbon Nanotubes Using Sesame Oil as a Natural Botanical Hydrocarbon Precursor.” Mater. Des., 94 166–175 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to Professor Balakumar Pitchai, Director, CSSTP at the Office of Research and Development of the Periyar Maniammai Institute of Science & Technology (Deemed to be University), India for his editorial advice on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Rajiv.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MOV 7085 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajiv, S., Shanmugam, K. Robust superhydrophobic composite coating using h-BN/MWCNT via supercritical fluid processing. J Coat Technol Res 20, 2135–2141 (2023). https://doi.org/10.1007/s11998-023-00816-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-023-00816-0

Keywords

Navigation