Log in

Antibacterial Effect of Gallic Acid in UV-C Light Treatment Against Escherichia coli O157:H7 and the Underlying Mechanism

  • RESEARCH
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Gallic acid (GA) is a common phenolic acid that is widely used as an antibacterial agent in the food industry. In order to increase its applicability, this study investigated the antibacterial effects and mechanisms of GA on Escherichia coli O157:H7 (E. coli O157:H7) after UV-C light treatment combined with photodynamic therapy. This study evaluated the photodynamic effects of GA after UV-C irradiation (UVC-GA) based on changes in substances and ROS generation. Using E. coli O157:H7 as a model bacterium, the antibacterial effects were evaluated from various aspects, including MIC, MBC, time-kill curve, cell membrane damage, DNA damage, protein damage, motility changes, biofilm formation, and activity. In addition, the antibacterial mechanisms were further investigated by combining RT-qPCR analysis of gene expression. The results of this study demonstrated that GA has the ability to exert photodynamic effects, even after the removal of the UV-C light source, and can effectively reduce the number of viable E. coli O157:H7 cells. Moreover, UVC-GA caused significant damage to the cell membrane, DNA, and proteins, and according to the RT-qPCR results, the antibacterial mechanisms of UVC-GA and GA on E. coli O157:H7 were completely different. Based on the above results, food-sterilizing detergents can be developed and applied to contaminated oyster to provide an effective food cleaning effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article.

References

  • Barbhuiya, R. I., Singha, P., & Singh, S. K. (2021). A comprehensive review on impact of non-thermal processing on the structural changes of food components. Food Research International, 149, 110647. https://doi.org/10.1016/j.foodres.2021.110647

    Article  CAS  PubMed  Google Scholar 

  • Benitez, F. J., Real, F. J., Acero, J. L., Leal, A. I., & Garcia, C. (2005). Gallic acid degradation in aqueous solutions by UV/H2O2 treatment, Fenton’s reagent and the photo-Fenton system. Journal of Hazardous Materials, 126(1–3), 31–39. https://doi.org/10.1016/j.jhazmat.2005.04.040

    Article  CAS  PubMed  Google Scholar 

  • Blair, K. M., Turner, L., Winkelman, J. T., Berg, H. C., & Kearns, D. B. (2008). A molecular clutch disables flagella in the Bacillus subtilis biofilm. Science (new York, NY), 320(5883), 1636–1638. https://doi.org/10.1126/science.1157877

    Article  CAS  Google Scholar 

  • Borges, A., Ferreira, C., Saavedra, M. J., & Simões, M. (2013). Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microbial Drug Resistance (larchmont, NY), 19(4), 256–265. https://doi.org/10.1089/mdr.2012.0244

    Article  CAS  Google Scholar 

  • Chen, X., Wang, H., Li, X., Ma, K., Zhan, Y., & Zeng, F. (2019). Molecular cloning and functional analysis of 4-Coumarate:CoA ligase 4(4CL-like 1)from Fraxinus mandshurica and its role in abiotic stress tolerance and cell wall synthesis. BMC Plant Biology, 19(1), 231. https://doi.org/10.1186/s12870-019-1812-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng, J.-H., Lv, X., Pan, Y., & Sun, D.-W. (2020). Foodborne bacterial stress responses to exogenous reactive oxygen species (ROS) induced by cold plasma treatments. Trends in Food Science & Technology, 103, 239–247. https://doi.org/10.1016/j.tifs.2020.07.022

  • Chien, S.-Y., Sheen, S., Sommers, C., & Sheen, L.-Y. (2019). Combination effect of high-pressure processing and essential oil (Melissa officinalis extracts) or their constituents for the inactivation of Escherichia coli in ground beef. Food and Bioprocess Technology, 12(3), 359–370. https://doi.org/10.1007/s11947-018-2211-5

    Article  CAS  Google Scholar 

  • Cossu, A., Ercan, D., Wang, Q., Peer, W. A., Nitin, N., & Tikekar, R. V. (2016b). Antimicrobial effect of synergistic interaction between UV-A light and gallic acid against Escherichia coli O157:H7 in fresh produce wash water and biofilm. Innovative Food Science & Emerging Technologies, 37, 44–52. https://doi.org/10.1016/j.ifset.2016.07.020

  • Cossu, A., Ercan, D., Tikekar, R. V., & Nitin, N. (2016a). Antimicrobial effect of photosensitized rose bengal on bacteria and viruses in model wash water. Food and Bioprocess Technology, 9(3), 441–451. https://doi.org/10.1007/s11947-015-1631-8

    Article  CAS  Google Scholar 

  • de Araújo, F. F., de Paulo, F. D., Neri-Numa, I. A., & Pastore, G. M. (2021). Polyphenols and their applications: An approach in food chemistry and innovation potential. Food Chemistry, 338, 127535. https://doi.org/10.1016/j.foodchem.2020.127535

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald, D. J., Stratford, M., Gasson, M. J., Ueckert, J., Bos, A., & Narbad, A. (2004). Mode of antimicrobial action of vanillin against Escherichia coli, Lactobacillus plantarum and Listeria innocua. Journal of Applied Microbiology, 97(1), 104–113. https://doi.org/10.1111/j.1365-2672.2004.02275.x

    Article  CAS  PubMed  Google Scholar 

  • García-Heredia, A., García, S., Merino-Mascorro, J. Á., Feng, P., & Heredia, N. (2016). Natural plant products inhibits growth and alters the swarming motility, biofilm formation, and expression of virulence genes in enteroaggregative and enterohemorrhagic Escherichia coli. Food Microbiology, 59, 124–132. https://doi.org/10.1016/j.fm.2016.06.001

    Article  CAS  PubMed  Google Scholar 

  • Gayán, E., Condón, S., & Álvarez, I. (2014). Biological aspects in food preservation by ultraviolet light: A review. Food and Bioprocess Technology, 7(1), 1–20. https://doi.org/10.1007/s11947-013-1168-7

    Article  Google Scholar 

  • Ginghina, R. E., Toader, G., Purica, M., Bratu, A. E., Lazaroaie, C., Tiganescu, T. V., Oncioiu, R. E., Iorga, G. O., Zorila, F. L., Constantin, M., Craciun, G., Comanescu, F., & Romanitan, C. (2022). Antimicrobial activity and degradation ability study on nanoparticle-enriched formulations specially designed for the neutralization of real and simulated biological and chemical warfare agents. Pharmaceuticals (Basel), 15(1). https://doi.org/10.3390/ph15010097

  • Gou, Y., Liu, W., Wang, J. J., Tan, L., Hong, B., Guo, L., Liu, H., Pan, Y., & Zhao, Y. (2019). CRISPR-Cas9 knockout of qseB induced asynchrony between motility and biofilm formation in Escherichia coli. Canadian Journal of Microbiology, 65(9), 691–702. https://doi.org/10.1139/cjm-2019-0100

    Article  CAS  PubMed  Google Scholar 

  • Hagiwara, D., Yamashino, T., & Mizuno, T. (2004). A genome-wide view of the Escherichia coli BasS–BasR two-component system implicated in iron-responses. Bioscience, Biotechnology, and Biochemistry, 68(8), 1758–1767. https://doi.org/10.1271/bbb.68.1758

    Article  CAS  PubMed  Google Scholar 

  • Heermann, R., & Jung, K. (2010). The complexity of the ‘simple’ two-component system KdpD/KdpE in Escherichia coli. FEMS Microbiology Letters, 304(2). https://doi.org/10.1111/j.1574-6968.2010.01906.x

  • Huang, J., Chen, B., Li, H., Zeng, Q.-H., Wang, J. J., Liu, H., Pan, Y., & Zhao, Y. (2020). Enhanced antibacterial and antibiofilm functions of the curcumin-mediated photodynamic inactivation against Listeria monocytogenes. Food Control, 108, 106886. https://doi.org/10.1016/j.foodcont.2019.106886

  • Humphries, R., Bobenchik, A. M., Hindler, J. A., & Schuetz, A. N. (2021). Overview of changes to the clinical and laboratory standards institute performance standards for antimicrobial susceptibility testing, M100, 31st edition. Journal of Clinical Microbiology, 59(12), e0021321. https://doi.org/10.1128/JCM.00213-21

  • Ilie, C. I., Oprea, E., Geana, E. I., Spoiala, A., Buleandra, M., Gradisteanu Pircalabioru, G., Badea, I. A., Ficai, D., Andronescu, E., Ficai, A., & Ditu, L. M. (2022). Bee pollen extracts: Chemical composition, antioxidant properties, and effect on the growth of selected probiotic and pathogenic bacteria. Antioxidants (Basel), 11(5). https://doi.org/10.3390/antiox11050959

  • Inoue T, Shingaki R, Hirose S, Waki K, Mori H & Fukui K. (2007). Genome-wide screening of genes required for swarming motility in Escherichia coli K-12. Journal of Bacteriology, 189(3), 950–957.https://doi.org/10.1128/jb.01294-06

  • Lee, C.-H., Woo, H.-J., Kang, J.-H., & Song, K. B. (2021). Electrostatic spraying of passion fruit (Passiflora edulis L.) peel extract for inactivation of Escherichia coli O157:H7 and Listeria monocytogenes on fresh-cut Lollo Rossa and beetroot leaves. Food and Bioprocess Technology, 14(5), 898–908. https://doi.org/10.1007/s11947-021-02608-z

  • Lee, J.-I., Kim, S.-S., & Kang, D.-H. (2023). Evaluation of the bactericidal efficacy of gallic acid activated by vacuum-UV Amalgam lamp. Food and Bioprocess Technology. https://doi.org/10.1007/s11947-023-03174-2

    Article  Google Scholar 

  • Lee, J. H., Kim, Y., Hoang, M. H., H-j, J., & Lee, S.-J. (2014). Rapid quantification of cellular flavonoid levels using quercetin and a fluorescent diphenylboric acid 2-amino ethyl ester probe. Food Science and Biotechnology, 23(1), 75–79. https://doi.org/10.1007/s10068-014-0010-y

    Article  CAS  Google Scholar 

  • Li, Y., Xu, Y., Liao, Q., **e, M., Tao, H., & Wang, H. L. (2021). Synergistic effect of hypocrellin B and curcumin on photodynamic inactivation of Staphylococcus aureus. Journal of Microbiology and Biotechnology, 14(2), 692–707. https://doi.org/10.1111/1751-7915.13734

  • Li, Y. L., Weng, H. C., Hsu, J. L., Lin, S. W., Guh, J. H., & Hsu, L. C. (2019). The combination of MK-2206 and WZB117 exerts a synergistic cytotoxic effect against breast cancer cells. Frontiers in Pharmacology, 10, 1311. https://doi.org/10.3389/fphar.2019.01311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, J., Cheng, D., Zhang, D., Han, L., Gan, Y., Zhang, T., & Yu, Y. (2022). Incorporating ε-polylysine hydrochloride, tea polyphenols, nisin, and ascorbic acid into edible coating solutions: Effect on quality and shelf life of marinated eggs. Food and Bioprocess Technology, 15(12), 2683–2696. https://doi.org/10.1007/s11947-022-02908-y

    Article  CAS  Google Scholar 

  • Liu, S., Zhang, Q., Li, H., Qiu, Z., & Yu, Y. (2022). Comparative assessment of the antibacterial efficacies and mechanisms of different tea extracts. Foods, 11(4).

  • Ma, X. H., Xu, J. Y., Han, D., Huang, W. X., Dang, B. J., Jia, W., & Xu, Z. C. (2020). Combination of β-aminobutyric acid and Ca(2+) alleviates chilling stress in tobacco (Nicotiana tabacum L.). Frontiers of Plant Science. 11, 556. https://doi.org/10.3389/fpls.2020.00556

  • McAllister, T. A., Martinez, T., Bae, H. D., Muir, A. D., Yanke, L. J., & Jones, G. A. (2005). Characterization of condensed tannins purified from legume forages: Chromophore production, protein precipitation, and inhibitory effects on cellulose digestion. Journal of Chemical Ecology, 31(9), 2049–2068. https://doi.org/10.1007/s10886-005-6077-4

  • Nair, M. S., Saxena, A., & Kaur, C. (2018). Characterization and antifungal activity of pomegranate peel extract and its use in polysaccharide-based edible coatings to extend the shelf-life of Capsicum (Capsicum annuum L.). Food and Bioprocess Technology, 11(7), 1317–1327. https://doi.org/10.1007/s11947-018-2101-x

  • Nakamura, K., Ishiyama, K., Sheng, H., Ikai, H., Kanno, T., & Niwano, Y. (2015). Bactericidal activity and mechanism of photoirradiated polyphenols against Gram-positive and -negative bacteria. Journal of Agricultural and Food Chemistry, 63(35), 7707–7713. https://doi.org/10.1021/jf5058588

    Article  CAS  PubMed  Google Scholar 

  • Nakamura, K., Yamada, Y., Ikai, H., Kanno, T., Sasaki, K., & Niwano, Y. (2012). Bactericidal action of photoirradiated gallic acid via reactive oxygen species formation. Journal of Agricultural and Food Chemistry, 60(40), 10048–10054. https://doi.org/10.1021/jf303177p

    Article  CAS  PubMed  Google Scholar 

  • Ortega-Rivas, E. (2011). Critical issues pertaining to application of pulsed electric fields in microbial control and quality of processed fruit juices. Food and Bioprocess Technology, 4(4), 631–645. https://doi.org/10.1007/s11947-009-0231-x

    Article  Google Scholar 

  • Oteiza, J. M., Peltzer, M., Gannuzzi, L., & Zaritzky, N. (2005). Antimicrobial efficacy of UV radiation on Escherichia coli O157:H7 (EDL 933) in fruit juices of different absorptivities. Journal of Food Protection, 68(1), 49–58. https://doi.org/10.4315/0362-028X-68.1.49

  • Partridge, J. D., Nhu, N. T. Q., Dufour, Y. S., & Harshey, R. M. (2019). Escherichia coli remodels the chemotaxis pathway for swarming. MBio, 10(2). https://doi.org/10.1128/mBio.00316-19

  • Pratt, L. A., & Kolter, R. (1998). Genetic analysis of Escherichia coli biofilm formation: Roles of flagella, motility, chemotaxis and type I pili. Molecular Microbiology, 30(2), 285–293. https://doi.org/10.1046/j.1365-2958.1998.01061.x

    Article  CAS  PubMed  Google Scholar 

  • Puig-Collderram, B., Domene-Ochoa, S., Salvà-Comas, M., Montero, M. M., Duran, X., González, J. R., Grau, S., Oliver, A., Horcajada, J. P., Padilla, E., Segura, C., & Prim, N. (2022). ATP bioluminescence assay to evaluate antibiotic combinations against extensively drug-resistant (XDR) Pseudomonas aeruginosa. Microbiol Spectr, 10(4), e0065122. https://doi.org/10.1128/spectrum.00651-22

    Article  CAS  PubMed  Google Scholar 

  • Rao, S. D., & Igoshin, O. A. (2021). Overlaid positive and negative feedback loops shape dynamical properties of PhoPQ two-component system. PLoS Computational Biology, 17(1), e1008130. https://doi.org/10.1371/journal.pcbi.1008130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao, S., Ngan, W. Y., Chan, L. C., Sekoai, P. T., Fung, A. H. Y., Pu, Y., Yao, Y., & Habimana, O. (2021). Questioning the source of identified non-foodborne pathogens from food-contact wooden surfaces used in Hong Kong’s urban wet markets. One Health, 13, 100300. https://doi.org/10.1016/j.onehlt.2021.100300

    Article  PubMed  PubMed Central  Google Scholar 

  • Rawel, H. M., Czajka, D., Rohn, S., & Kroll, J. (2002). Interactions of different phenolic acids and flavonoids with soy proteins. International Journal of Biological Macromolecules, 30(3–4), 137–150. https://doi.org/10.1016/S0141-8130(02)00016-8

    Article  CAS  PubMed  Google Scholar 

  • Remis, R. S., MacDonald, K. L., Riley, L. W., Puhr, N. D., Wells, J. G., Davis, B. R., Blake, P. A., & Cohen, M. L. (1984). Sporadic cases of hemorrhagic colitis associated with Escherichia coli O157:H7. Annals of Internal Medicine, 101(5), 624–626. https://doi.org/10.7326/0003-4819-101-5-624

    Article  CAS  PubMed  Google Scholar 

  • Riley, L. W., Remis, R. S., Helgerson, S. D., McGee, H. B., Wells, J. G., Davis, B. R., Hebert, R. J., Olcott, E. S., Johnson, L. M., Hargrett, N. T., Blake, P. A., & Cohen, M. L. (1983). Hemorrhagic colitis associated with a rare Escherichia coli serotype. New England Journal of Medicine, 308(12), 681–685. https://doi.org/10.1056/nejm198303243081203

    Article  CAS  PubMed  Google Scholar 

  • She, W., Ye, W., Cheng, A., Ye, W., Ma, C., Wang, R., Cheng, J., Liu, X., Yuan, Y., Chik, S. Y., LimlinganMalit, J. J., Lu, Y., Chen, F., & Qian, P. Y. (2022). Discovery, yield improvement, and application in marine coatings of potent antifouling compounds albofungins targeting multiple fouling organisms. Frontiers in Microbiology, 13, 906345. https://doi.org/10.3389/fmicb.2022.906345

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi, Y.-G., Jiang, L., Lin, S., **, W.-G., Gu, Q., Chen, Y.-W., Zhang, K., & Ettelaie, R. (2022). Ultra-efficient antimicrobial photodynamic inactivation system based on blue light and octyl gallate for ablation of planktonic bacteria and biofilms of Pseudomonas fluorescens. Food Chemistry, 374, 131585. https://doi.org/10.1016/j.foodchem.2021.131585

    Article  CAS  PubMed  Google Scholar 

  • Shi, Y.-G., Zhang, R.-R., Zhu, C.-M., Xu, M.-F., Gu, Q., Ettelaie, R., Lin, S., Wang, Y.-F., & Leng, X.-Y. (2021). Antimicrobial mechanism of alkyl gallates against Escherichia coli and Staphylococcus aureus and its combined effect with electrospun nanofibers on Chinese Taihu icefish preservation. Food Chemistry, 346, 128949. https://doi.org/10.1016/j.foodchem.2020.128949

    Article  CAS  PubMed  Google Scholar 

  • Shmool, T. A., Hooper, P. J., Kaminski Schierle, G. S., van der Walle, C. F., & Zeitler, J. A. (2019). Terahertz spectroscopy: An investigation of the structural dynamics of freeze-dried poly lactic-co-glycolic acid microspheres. Pharmaceutics, 11(6), 291. https://doi.org/10.3390/pharmaceutics11060291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Son, H. S., Choi, S. B., Zoh, K. D., & Khan, E. (2007). Effects of ultraviolet intensity and wavelength on the photolysis of triclosan. Water Science and Technology : A Journal of the International Association on Water Pollution Research, 55(1–2), 209–216. https://doi.org/10.2166/wst.2007.034

    Article  CAS  PubMed  Google Scholar 

  • Tian, Q., Wei, S., Su, H., Zheng, S., Xu, S., Liu, M., Bo, R., & Li, J. (2022). Bactericidal activity of gallic acid against multi-drug resistance Escherichia coli. Microbial Pathogenesis, 173(Pt A), 105824. https://doi.org/10.1016/j.micpath.2022.105824

    Article  CAS  PubMed  Google Scholar 

  • Wang, R., Lum, J., Callaway, Z., Lin, J., Bottje, W., & Li, Y. (2015). A label-free impedance immunosensor using screen-printed interdigitated electrodes and magnetic nanobeads for the detection of E. coli O157:H7. Biosensors (Basel), 5(4), 791–803. https://doi.org/10.3390/bios5040791

  • Wang, R., Fang, M., Hu, X., Yu, Y., & **ao, X. (2021). Kojic acid and tea polyphenols inactivate Escherichia coli O157:H7 in vitro and on salmon fillets by inflicting damage on cell membrane and binding to genomic DNA. International Journal of Food Science & Technology, 56. https://doi.org/10.1111/ijfs.15268

  • Wang, Q., Leong, W. F., Elias, R. J., & Tikekar, R. V. (2019). UV-C irradiated gallic acid exhibits enhanced antimicrobial activity via generation of reactive oxidative species and quinone. Food Chemistry, 287, 303–312. https://doi.org/10.1016/j.foodchem.2019.02.041

    Article  CAS  PubMed  Google Scholar 

  • Wang, S., Liu, X., Xu, X., Yang, D., Wang, D., Han, X., Shi, Y., Tian, M., Ding, C., Peng, D., & Yu, S. (2016). Escherichia coli type III secretion system 2 ATPase EivC is involved in the motility and virulence of avian pathogenic Escherichia coli. Frontiers in Microbiology, 7, 1387. https://doi.org/10.3389/fmicb.2016.01387

    Article  PubMed  PubMed Central  Google Scholar 

  • Weigel, W. A., & Demuth, D. R. (2016). QseBC, a two-component bacterial adrenergic receptor and global regulator of virulence in Enterobacteriaceae and Pasteurellaceae. Molecular Oral Microbiology, 31(5), 379–397. https://doi.org/10.1111/omi.12138

    Article  CAS  PubMed  Google Scholar 

  • Wiktor, A., Mandal, R., & Pratap Singh, A. (2019). Pulsed light treatment below a Critical Fluence (3.82 J/cm(2)) minimizes photo-degradation and browning of a model phenolic (gallic acid) solution. Foods, 8(9).

  • Wu, D., Baigalmaa, L., Yao, Y., Li, G., Su, M., Fan, L., & Morigen. (2021). The Escherichia coli QseB/QseC signaling is required for correct timing of replication initiation and cell motility. Gene, 773, 145374. https://doi.org/10.1016/j.gene.2020.145374

    Article  CAS  PubMed  Google Scholar 

  • Xu, C., Yagiz, Y., Hsu, W.-Y., Simonne, A., Lu, J., & Marshall, M. R. (2014). Antioxidant, antibacterial, and antibiofilm properties of polyphenols from muscadine grape (Vitis rotundifolia Michx.) pomace against selected foodborne pathogens. Journal of Agricultural and Food Chemistry, 62(28), 6640–6649. https://doi.org/10.1021/jf501073q

  • Yu, L., Wang, H., Han, X., Li, W., Xue, M., Qi, K., Chen, X., Ni, J., Deng, R., Shang, F., & Xue, T. (2020). The two-component system, BasSR, is involved in the regulation of biofilm and virulence in avian pathogenic Escherichia coli. Avian Pathology : Journal of the WVPA, 49(6), 532–546. https://doi.org/10.1080/03079457.2020.1781791

    Article  CAS  Google Scholar 

  • Zhang, Q., Tu, T., d'Avignon, D. A., & Gross, M. L. (2009). Balance of beneficial and deleterious health effects of quinones: a case study of the chemical properties of genistein and estrone quinones. Journal of the American Chemical Society, 131(3), 1067–1076 .https://doi.org/10.1021/ja806478b

Download references

Acknowledgements

The authors wish to thank the Guangxi Minzu University, China, for providing sufficient experimental facilities for carrying out this research.

Funding

This work was supported by Science and Technology Major Project of Guangxi (Guike AB21196020) and the National Natural Science Foundation of China (81960164).

Author information

Authors and Affiliations

Authors

Contributions

Lifang Yang and Mingguo Jiang: Formulation or evolution of overarching research goals and aims. Yuzhang Zhu: Experimental inquiry, formal analysis and writing manuscript. Kun Lin: Formal analysis. Xuanzhang: Assist in experiments. Huawei Ma: Conceptualization. Yang Li and Wei Li: Validation.

Corresponding authors

Correspondence to Lifang Yang or Mingguo Jiang.

Ethics declarations

Competing Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Lin, K., Zhang, X. et al. Antibacterial Effect of Gallic Acid in UV-C Light Treatment Against Escherichia coli O157:H7 and the Underlying Mechanism. Food Bioprocess Technol (2023). https://doi.org/10.1007/s11947-023-03244-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11947-023-03244-5

Keywords

Navigation