Log in

Antimicrobial Edible Starch Films Obtained By Casting and Thermo‑compression Techniques

  • RESEARCH
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Physicochemical and functional properties of edible starch-based active films containing or not natamycin and/or nisin as affected by the processing method (thermo-compression molding and casting) were analyzed in terms of barrier, thermal, mechanical and antimicrobial properties against Listeria innocua and Saccharomyces cerevisiae. The results revealed that the processing method significantly affected the properties of the films. Thus, the cast films were more transparent, resistant to rupture and stretchable and with higher glass transition temperature values, while the thermoformed ones showed a more homogeneous matrix with higher barrier capacity to oxygen and lower moisture content. On the other hand, the thermal stability was not affected by the type of processing of the films or by the antimicrobial incorporation, all the films exhibiting the typical range of polymer degradation temperature around 250–350 ºC. Moreover, the type of film processing method used, especially when using nisin as active compound, significantly affected the antimicrobial activity of the edible films. So, the maximum antimicrobial activity against S. cerevisiae and L. innocua was obtained when the films incorporating both antimicrobials were obtained by casting. Therefore, the functionality of these active edible films will be better preserved when applied by casting technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability Statement

All data generated or analysed during this study are included in this published article.

References

  • Andrade, J., González-Martínez, C., & Chiralt, A. (2022). Physical and active properties of poly (vinyl alcohol) films with phenolic acids as affected by the processing method. Food Packaging and Shelf Life, 33, 100855.

    Article  CAS  Google Scholar 

  • ASTM. (2002). Standard Test Method for Tensile Properties of Thin Plastic Sheeting, ASTM D882–02. American Society for Testing and Materials, 14, 1–10.

    Google Scholar 

  • ASTM, E. (2003). Standard Test Methods for Water Vapor Transmission of Ship** Containers —. 95(Reapproved), 4–6. https://doi.org/10.1520/D4279-95R09.2.

  • Basch, C. Y., Jagus, R. J., & Flores, S. K. (2013). Physical and antimicrobial properties of tapioca starch-HPMC edible films incorporated with nisin and/or potassium sorbate. Food and Bioprocess Technology, 6(9), 2419–2428.

    Article  CAS  Google Scholar 

  • Berti, S., Flores, S. K., & Jagus, R. J. (2020). Improvement of the microbiological quality of Argentinian Port Salut cheese by applying starch-based films and coatings reinforced with rice bran and containing natural antimicrobials. Journal of Food Processing and Preservation, 44(10), e14827.

    Article  CAS  Google Scholar 

  • Berti, S., Jagus, R. J., & Flores, S. K. (2021). Effect of rice bran addition on physical properties of antimicrobial biocomposite films based on starch. Food and Bioprocess Technology, 14(9), 1700–1711.

    Article  CAS  Google Scholar 

  • Cano, A., Jiménez, A., Cháfer, M., Gónzalez, C., & Chiralt, A. (2014). Effect of amylose:Amylopectin ratio and rice bran addition on starch films properties. Carbohydrate Polymers., 111, 543–555.

  • Cazón, P., Velazquez, G., Ramírez, J. A., & Vázquez, M. (2016). Polysaccharide-based films and coatings for food packaging: A review. Food Hydrocolloids.

  • Chuaynukul, K., Nagarajan, M., Prodpran, T., Benjakul, S., Songtipya, P., & Songtipya, L. (2018). Comparative characterization of bovine and fish gelatin films fabricated by compression molding and solution casting methods. Journal of Polymers and the Environment, 26(3), 1239–1252.

    Article  CAS  Google Scholar 

  • Dalnoki-Veress, K., Forrest, J. A., Murray, C., Gigault, C., & Dutcher, J. R. (2001). Molecular weight dependence of reductions in the glass transition temperature of thin, freely standing polymer films. Physical Review E, 63(3), 031801.

    Article  CAS  Google Scholar 

  • Danilovas, P. P., Rutkaite, R., & Zemaitaitis, A. (2014). Thermal degradation and stability of cationic starches and their complexes with iodine. Carbohydrate Polymers, 112, 721–728.

    Article  CAS  PubMed  Google Scholar 

  • Davies, E. A., Bevis, H. E., Potter, R., Harris, J., Williams, G. C., & Delves-Broughton, J. (1998). Research note: The effect of pH on the stability of nisin solution during autoclaving. Letters in Applied Microbiology, 27, 186–187.

    Article  CAS  Google Scholar 

  • de Vargas, V. H., Marczak, L. D. F., Flôres, S. H., & Mercali, G. D. (2022). Advanced technologies applied to enhance properties and structure of films and coatings: A review. Food and Bioprocess Technology, 15(6), 1224–1247.

    Article  Google Scholar 

  • Ferreira, L. F., de Oliveira, A. C. S., de Oliveira Begali, D., de Sena Neto, A. R., Martins, M. A., de Oliveira, J. E., ... & Dias, M. V. (2021). Characterization of cassava starch/soy protein isolate blends obtained by extrusion and thermo-compression. Industrial crops and products, 160, 113092.

  • Food and Agriculture Organization of the United Nations – FAO, Codex Alimentarius. (2011). Codex stan 262–2006: milk and milk products.

  • Freitas, P., Gonzalez-Martínez, C., & Chiralt, A. (2023). Antioxidant starch composite films containing rice straw extract and cellulose fibres. Food Chemistry, 400, 134073.

  • Freitas, P. A., Arias, C. I. L. F., Torres-Giner, S., González-Martínez, C., & Chiralt, A. (2021). Valorization of rice straw into cellulose microfibers for the reinforcement of thermoplastic corn starch films. Applied Sciences, 11(18), 8433.

    Article  CAS  Google Scholar 

  • Gallo, L., & Jagus, R. (2006). Modelling Saccharomyces cerevisiae inactivation by natamycin in liquid cheese whey. Brazilian Journal of Food Technology, 9(4), 311–316.

    CAS  Google Scholar 

  • González-Seligra, P., Guz, L., Ochoa-Yepes, O., Goyanes, S., & Famá, L. (2017). Influence of extrusion process conditions on starch film morphology. Lwt, 84, 520–528.

    Article  Google Scholar 

  • Hazrati, K. Z., Sapuan, S. M., Zuhri, M. Y. M., & Jumaidin, R. (2021). Effect of plasticizers on physical, thermal, and tensile properties of thermoplastic films based on Dioscorea hispida starch. International Journal of Biological Macromolecules, 185, 219–228.

    Article  CAS  PubMed  Google Scholar 

  • Hernández-García, E., Vargas, M., & Chiralt, A. (2021). Thermoprocessed starch-polyester bilayer films as affected by the addition of gellan or xanthan gum. Food Hydrocolloids, 113, 106509.

    Article  Google Scholar 

  • Holcapkova, P., Hurajova, A., Bazant, P., Pummerova, M., & Sedlarik, V. (2018). Thermal stability of bacteriocin nisin in polylactide-based films. Polymer Degradation and Stability, 158. https://doi.org/10.1016/j.polymdegradstab.2018.10.019.

  • Hutchings, J. B. (1999). Instrumental specification. Food colour and appearance. Springer, 199–237.

  • Jiménez, A., Fabra, M., Talens, P., & Chiralt, A. (2012). Effect of recrystallization on tensile, optical and water vapour barrier properties of corn starch films containing fatty acids. Food Hydrocolloids, 26(1), 302–310.

    Article  Google Scholar 

  • Jha, P., Dharmalingam, K., Nishizu, T., Katsuno, N., & Anandalakshmi, R. (2020). Effect of amylose–amylopectin ratios on physical, mechanical, and thermal properties of starch-based bionanocomposite films incorporated with CMC and nanoclay. Starch-Stärke, 72(1–2), 1900121.

    Article  CAS  Google Scholar 

  • La Fuente, C. I., & do Val Siqueira, L., Augusto, P. E. D., & Tadini, C. C. (2022). Casting and extrusion processes to produce bio-based plastics using cassava starch modified by the dry heat treatment (DHT). Innovative Food Science & Emerging Technologies, 75, 102906.

    Article  Google Scholar 

  • Leelaphiwat, P., Pechprankan, C., Siripho, P., Bumbudsanpharoke, N., & Harnkarnsujarit, N. (2022). Effects of nisin and EDTA on morphology and properties of thermoplastic starch and PBAT biodegradable films for meat packaging. Food Chemistry, 369, 130956.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Q., Wu, X., Qian, F., Zhang, T., & Mu, G. (2019). Influence of natamycin loading on the performance of transglutaminase-induced crosslinked gelatin composite films. International Journal of Food Science & Technology, 54(7), 2425–2436.

    Article  CAS  Google Scholar 

  • Luciano, C. G., Tessaro, L., Lourenço, R. V., Bittante, A. M. Q. B., Fernandes, A. M., Moraes, I. C. F., & do Amaral Sobral, P. J. (2021). Effects of nisin concentration on properties of gelatin film-forming solutions and their films. International Journal of Food Science & Technology, 56(2), 587–599.

    Article  Google Scholar 

  • Menzel, C., González-Martínez, C., Chiralt, A., & Vilaplana, F. (2019). Antioxidant starch films containing sunflower hull extracts. Carbohydrate Polymers, 214, 142–151.

    Article  CAS  PubMed  Google Scholar 

  • Menzel, C., Gonzalez-Martinez, C., Vilaplana, F., Diretto, G., & Chiralt, A. (2020). Incorporation of natural antioxidants from rice straw into renewable starch films. International Journal of Biological Macromolecules, 146, 976–986.

    Article  CAS  PubMed  Google Scholar 

  • Miller, K. S., & Krochta, J. M. (1997). Oxygen and aroma barrier properties of edible films. Trends in Food Science and Technology, 8, 228–237.

    Article  CAS  Google Scholar 

  • Mir, S. A., Shah, M. A., Dar, B. N., Wani, A. A., Ganai, S. A., & Nishad, J. (2017). Supercritical impregnation of active components into polymers for food packaging applications. Food and Bioprocess Technology, 10, 1749–1754.

    Article  CAS  Google Scholar 

  • Moatsou, G., Moschopoulou, E., Beka, A., Tsermoula, P., & Pratsis, D. (2015). Effect of natamycin-containing coating on the evolution of biochemical and microbiological parameters during the ripening and storage of ovine hard-Gruyère-type cheese. International Dairy Journal, 50, 1–8.

  • Moreno, O., Pastor, C., Muller, J., Atarés, L., González, C., & Chiralt, A. (2014). Physical and bioactive properties of corn starch–Buttermilk edible films. Journal of Food Engineering, 141, 27–36.

    Article  CAS  Google Scholar 

  • Moro, T. M., Ascheri, J. L., Ortiz, J. A., Carvalho, C. W., & Meléndez-Arévalo, A. (2017). Bioplastics of native starches reinforced with passion fruit peel. Food and Bioprocess Technology, 10, 1798–1808.

    Article  CAS  Google Scholar 

  • Ochoa-Yepes, O., Di Giogio, L., Goyanes, S., Mauri, A., & Famá, L. (2019). Influence of process (extrusion/thermo-compression, casting) and lentil protein content on physicochemical properties of starch films. Carbohydrate Polymers, 208, 221–231.

    Article  CAS  PubMed  Google Scholar 

  • Ollé Resa, C., Jagus, R., & Gerschenson, L. (2014). Effect of natamycin, nisin and glycerol on the physicochemical properties, roughness and hydrophobicity of tapioca starch edible films. Materials Science and Engineering C, 40, 281–287.

    Article  PubMed  Google Scholar 

  • Ollé Resa, C. P., Gerschenson, L. N., & Jagus, R. J. (2013). Effect of natamycin on physical properties of starch edible films and their effect on Saccharomyces cerevisiae activity. Food and Bioprocess Technology, 6(11), 3124–3133.

    Article  Google Scholar 

  • Ordonez, R., Atarés, L., & Chiralt, A. (2021). Physicochemical and antimicrobial properties of cassava starch films with ferulic or cinnamic acid. Lwt, 144, 111242.

    Article  CAS  Google Scholar 

  • Ordoñez, R., Atarés, L., & Chiralt, A. (2022). Properties of PLA films with cinnamic acid: Effect of the processing method. Food and Bioproducts Processing, 133, 25–33.

    Article  Google Scholar 

  • Pal, A. K., Wu, F., Misra, M., & Mohanty, A. K. (2020). Reactive extrusion of sustainable PHBV/PBAT-based nanocomposite films with organically modified nanoclay for packaging applications: Compression moulding vs. cast film extrusion. Composites Part B: Engineering, 198, 108141.

  • Ribeiro, A. M., Estevinho, B. N., & Rocha, F. (2021). Preparation and incorporation of functional ingredients in edible films and coatings. Food and Bioprocess Technology, 14, 209–231.

    Article  CAS  Google Scholar 

  • Schelegueda, L. I., Gliemmo, M. F., & Campos, C. A. (2012). Antimicrobial synergic effect of chitosan with sodium lactate, nisin or potassium sorbate against the bacterial flora of fish. Journal of Food Research, 1(3), 272.

    Article  Google Scholar 

  • Talón, E., Vargas, M., Chiralt, A., & González-Martínez, C. (2019). Antioxidant starch-based films with encapsulated eugenol. Application to Sunflower Oil Preservation. Lwt, 113, 108290.

    Google Scholar 

  • Te Welscher, Y. M., Jones, L., van Leeuwen, M. R., Dijksterhuis, J., De Kruijff, B., Eitzen, G., & Breukink, E. (2010). Natamycin inhibits vacuole fusion at the priming phase via a specific interaction with ergosterol. Antimicrobial Agents and Chemotherapy, 54(6), 2618–2625.

    Article  Google Scholar 

  • Thirupathi Vasuki, M., Kadirvel, V., & Pejavara Narayana, G. (2023). Smart packaging—An overview of concepts and applications in various food industries. Food Bioengineering.

  • Toro-Márquez, L. A., Merino, D., & Gutiérrez, T. J. (2018). Bionanocomposite films prepared from corn starch with and without nanopackaged Jamaica (Hibiscus sabdariffa) flower extract. Food and Bioprocess Technology, 11(11), 1955–1973.

  • Valencia-Sullca, C., Atarés, L., Vargas, M., & Chiralt, A. (2018). Physical and antimicrobial properties of compression-molded cassava starch-chitosan films for meat preservation. Food and Bioprocess Technology, 11, 1339–1349.

    Article  CAS  Google Scholar 

  • Vásconez, M. B., Flores, S. K., Campos, C. A., Alvarado, J., & Gerschenson, L. N. (2009). Antimicrobial activity and physical properties of chitosan–tapioca starch based edible films and coatings. Food Research International, 42(7), 762–769.

    Article  Google Scholar 

  • Wang, S. Y., Zhan, L., **, H. F., Bruhns, O. T., & **ao, H. (2019). Hencky strain and logarithmic rate for unified approach to constitutive modeling of continua. State of the Art and Future Trends in Material Modeling, 443–484.

Download references

Funding

This study was financially supported by Universidad de Buenos Aires (UBACyT 2002017010063BA and UBACyT 20020170100092BA), Agencia Nacional de Promoción Científica y Tecnológica (PICT 01551 and PICT 2019–1842) and Agencia Estatal de Investigación (Spain), grant number PID2019-453 105207RB-I00.

Author information

Authors and Affiliations

Authors

Contributions

Sofía Berti: Investigation, Methodology, Formal analysis, Data Curation, Validation, Writing—Original Draft, Visualization. Rosa J Jagus: Conceptualization, Methodology, Resources, Investigation, Formal analysis, Validation, Visualization, Supervision, Project administration, Funding acquisition, Writing—Original Draft, Writing—Review and Editing. Silvia K Flores: Conceptualization, Methodology, Resources, Formal analysis, Investigation, Visualization, Supervision, Project administration, Funding acquisition, Writing—Original Draft, Writing—Review and Editing. Chelo González-Martinez: Conceptualization, Methodology, Resources, Investigation, Formal analysis, Validation, Visualization, Supervision, Project administration, Funding acquisition, Writing—Original Draft, Writing—Review and Editing.

Corresponding author

Correspondence to Sofía Berti.

Ethics declarations

Conflicts of interest/Competing interests

The authors confirm that they have no conflicts of interest with respect to the work described in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berti, S., Jagus, R.J., Flores, S.K. et al. Antimicrobial Edible Starch Films Obtained By Casting and Thermo‑compression Techniques. Food Bioprocess Technol 17, 904–916 (2024). https://doi.org/10.1007/s11947-023-03172-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-023-03172-4

Keywords

Navigation