Log in

Molecular Structures and In Vitro Bioactivities of Enzymatically Produced Porcine Placenta Peptides Fractionated by Ultrafiltration

  • Original Research
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

An alcalase-catalysed porcine placenta hydrolysate (PPH) with a 30% degree of hydrolysis was fractionated using two cycles of ultrafiltration (UF) with molecular weight cut-offs of 100 kDa and 30 kDa to search for novel bioactive peptides. The permeate of the 30 kDa UF (UF4) demonstrated superior radical scavenging activities (DPPH/ABTS•+), ferric-reducing power, β-carotene bleaching inhibitory activity, nitric oxide scavenging activity, angiotensin-converting enzyme inhibition and anti-α-amylase/α-glucosidase activity with high antioxidant stability in an in vitro gastrointestinal tract model system. The UF4 fraction was rich in hydrophobic amino acids (e.g. valine, isoleucine, alanine, leucine and proline). The first five amino acid sequences identified in the UF4 fraction were LSSPATLNSR, ASISLPR, ILLEVNNR, ESLITLIEK and QPLLLDDR, with molecular weights ranging from 760 to 2682 Da. Based on the findings, the UF4 fraction isolated from crude PPH can be developed as a novel bioactive ingredient in functional foods with the potential for scale-up and economic feasibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data and the materials are all available in this article.

References

  • Ahn, C. B., Cho, Y. S., & Je, J. Y. (2015). Purification and anti-inflammatory action of tripeptide from salmon pectoral fin byproduct protein hydrolysate. Food Chemistry, 168, 151–156.

    CAS  PubMed  Google Scholar 

  • Bamdad, F., & Chen, L. (2013). Antioxidant capacities of fractionated barley hordein hydrolysates in relation to peptide structures. Molecular Nutrition & Food Research, 57, 493–503.

    CAS  Google Scholar 

  • Chen, H. M., Muramoto, K., Yamauchi, F., & Nokihara, K. (1996). Antioxidant activity of designed peptides based on the antioxidative peptide isolated from digests of a soybean protein. Journal of Agricultural and Food Chemistry, 44, 2619–2623.

    Google Scholar 

  • Cushman, D. W., & Cheung, H. S. (1971). Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochemical Pharmacology, 20, 1637–1648.

    CAS  PubMed  Google Scholar 

  • Fadimu, G. J., Gill, H., Farahnaky, A., & Truong, T. (2021). Investigating the impact of ultrasound pretreatment on the physicochemical, structural, and antioxidant properties of lupin protein hydrolysates. Food and Bioprocess Technology, 14, 2004–2019.

    CAS  Google Scholar 

  • Gómez-Ruiz, J. Á., López-Expósito, I., Pihlanto, A., Ramos, M., & Recio, I. (2008). Antioxidant activity of ovine casein hydrolysates: Identification of active peptides by HPLC-MS/MS. European Food Research and Technology, 227, 1061–1067.

    Google Scholar 

  • Habebullah, S. F., Andersen, L. L., Otte, J., Nielsen, H. H., Jessen, F., & Jacobsen, C. (2016). Antioxidant activity of cod (Gadus morhua) protein hydrolysates: Fractionation and characterisation of peptide fractions. Food Chemistry, 204, 409–419.

    Google Scholar 

  • Huang, G. Q., **ao, J. X., Hao, L. Q., & Yang, J. (2017). Microencapsulation of an angiotensin I-converting enzyme inhibitory peptide VLPVP by membrane emulsification. Food and Bioprocess Technology, 10, 2005–2012.

    CAS  Google Scholar 

  • Huang, L., Ren, C., Li, H. J., & Wu, Y. C. (2021). Recent progress on processing technologies, chemical components, and bioactivities of Chinese red ginseng, American red ginseng, and Korean red ginseng. Food and Bioprocess Technology. https://doi.org/10.1007/s11947-021-02697-w

    Article  Google Scholar 

  • Ishak, N. H., & Sarbon, N. M. (2018). A review of protein hydrolysates and bioactive peptides deriving from wastes generated by fish processing. Food and Bioprocess Technology, 11, 2–16.

    CAS  Google Scholar 

  • Jang, A., Jo, C., Kang, K. S., & Lee, M. (2008). Antimicrobial and human cancer cell cytotoxic effect of synthetic angiotensin-converting enzyme (ACE) inhibitory peptides. Food Chemistry, 107, 327–336.

    CAS  Google Scholar 

  • Jiang, H., Tong, T., Sun, J., Xu, Y., Zhao, Z., & Liao, D. (2014). Purification and characterization of antioxidative peptides from round scad (Decapterus maruadsi) muscle protein hydrolysate. Food Chemistry, 154, 158–163.

    CAS  PubMed  Google Scholar 

  • Kim, S. K., Kim, Y. T., Byun, H. G., Nam, K. S., Joo, D. S., & Shahidi, F. (2001). Isolation and characterization of antioxidative peptides from gelatin hydrolysate of Alaska pollack skin. Journal of Agricultural and Food Chemistry, 49, 1984–1989.

    CAS  PubMed  Google Scholar 

  • Laosam, P., Panpipat, W., Yusakul, G., Cheong, L., & Chaijan, M. (2021). Porcine placenta hydrolysate as an alternate functional food ingredient: In vitro antioxidant and antibacterial assessments. PLoS One, 16, e0258445.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, S. Y., & Hur, S. J. (2017). Angiotensin converting enzyme inhibitory and antioxidant activities of enzymatic hydrolysates of Korean native cattle (Hanwoo) myofibrillar protein. BioMed Research International, 2017.

  • Liu, J., **, Y., Lin, S., Jones, G. S., & Chen, F. (2015). Purification and identification of novel antioxidant peptides from egg white protein and their antioxidant activities. Food Chemistry, 175, 258–266.

    CAS  PubMed  Google Scholar 

  • Lu, X., Zhang, L., Sun, Q., Song, G., & Huang, J. (2019). Extraction, identification and structure-activity relationship of antioxidant peptides from sesame (Sesamum indicum L.) protein hydrolysate. Food Research International, 116, 707–716.

    CAS  PubMed  Google Scholar 

  • Ma, S., Zhang, M., Beta, T., Dong, T., Bao, X., & Li, Z. (2017). Purification and structural identification of glutelin peptides derived from oats. CyTA-Journal of Food, 15, 508–515.

    CAS  Google Scholar 

  • Marco, G. J. (1968). A rapid method for evaluation of antioxidants. Journal of the American Oil Chemists’ Society, 45, 594–598.

    CAS  Google Scholar 

  • Mohammad, A. W., Ng, C. Y., Lim, Y. P., & Ng, G. H. (2012). Ultrafiltration in food processing industry: Review on application, membrane fouling, and fouling control. Food and Bioprocess Technology, 5, 1143–1156.

    Google Scholar 

  • Nagae, M., Nagata, M., Teramoto, M., Yamakawa, M., Matsuki, T., Ohnuki, K., & Shimizu, K. (2020). Effect of porcine placenta extract supplement on skin condition in healthy adult women: A randomised, double-blind placebo-controlled study. Nutrients, 12, 1671.

    CAS  PubMed Central  Google Scholar 

  • Pérez, R. A., Iglesias, M. T., Pueyo, E., González, M., & de Lorenzo, C. (2007). Amino acid composition and antioxidant capacity of Spanish honeys. Journal of Agricultural and Food Chemistry, 55, 360–365.

    PubMed  Google Scholar 

  • Qian, Z. J., Jung, W. K., Byun, H. G., & Kim, S. K. (2008). Protective effect of an antioxidative peptide purified from gastrointestinal digests of oyster, Crassostrea gigas against free radical induced DNA damage. Bioresource Technology, 99, 3365–3371.

    CAS  PubMed  Google Scholar 

  • Rajapakse, N., Mendis, E., Byun, H. G., & Kim, S. K. (2005). Purification and in vitro antioxidative effects of giant squid muscle peptides on free radical-mediated oxidative systems. The Journal of Nutritional Biochemistry, 16, 562–569.

    CAS  PubMed  Google Scholar 

  • Rajendran, S. R., Mason, B., & Doucette, A. A. (2021). Review of membrane separation models and technologies: Processing complex food-based biomolecular fractions. Food and Bioprocess Technology, 14, 415–428.

    Google Scholar 

  • Rasaratnam, K., Nantasenamat, C., Phaonakrop, N., Roytrakul, S., & Tanyong, D. (2021). A novel peptide isolated from garlic shows anticancer effect against leukemic cell lines via interaction with Bcl-2 family proteins. Chemical Biology & Drug Design, 97, 1017–1028.

    CAS  Google Scholar 

  • Roslan, J., Kamal, S. M. M., Yunos, K. F. M., & Abdullah, N. (2017). Assessment on multilayer ultrafiltration membrane for fractionation of tilapia by-product protein hydrolysate with angiotensin I-converting enzyme (ACE) inhibitory activity. Separation and Purification Technology, 173, 250–257.

    CAS  Google Scholar 

  • Roslan, J., Kamal, S. M. M., Yunos, K. F. M., & Abdullah, N. (2018). Evaluation on performance of dead-end ultrafiltration membrane in fractionating tilapia by-product protein hydrolysate. Separation and Purification Technology, 195, 21–29.

    CAS  Google Scholar 

  • Siow, H. L., Lim, T. S., & Gan, C. Y. (2017). Development of a workflow for screening and identification of α-amylase inhibitory peptides from food source using an integrated Bioinformatics-phage display approach: Case study–Cumin seed. Food Chemistry, 214, 67–76.

    CAS  PubMed  Google Scholar 

  • Sonklin, C., Laohakunjit, N., & Kerdchoechuen, O. (2018). Assessment of antioxidant properties of membrane ultrafiltration peptides from mungbean meal protein hydrolysates. PeerJ, 6, e5337.

    PubMed  PubMed Central  Google Scholar 

  • Sripokar, P., Benjakul, S., & Klomklao, S. (2019). Antioxidant and functional properties of protein hydrolysates obtained from starry triggerfish muscle using trypsin from albacore tuna liver. Biocatalysis and Agricultural Biotechnology, 17, 447–454.

    Google Scholar 

  • Sungpud, C., Panpipat, W., Yoon, A. S., & Chaijan, M. (2019). Tuning of virgin coconut oil and propylene glycol ratios for maximizing the polyphenol recovery and in vitro bioactivities of mangosteen (Garcinia mangostana L.) pericarp. Process Biochemistry, 87, 179–186.

    CAS  Google Scholar 

  • Suttisuwan, R., Phunpruch, S., Saisavoey, T., Sangtanoo, P., Thongchul, N., & Karnchanatat, A. (2019). Isolation and characterisation of anti-inflammatory peptides derived from trypsin hydrolysis of microalgae protein (Synechococcus sp. VDW). Food Biotechnology, 33, 303–324.

    CAS  Google Scholar 

  • Teng, D., Fang, Y., Song, X., & Gao, Y. (2011). Optimization of enzymatic hydrolysis parameters for antioxidant capacity of peptide from goat placenta. Food and Bioproducts Processing, 89, 202–208.

    CAS  Google Scholar 

  • Thanapongtharm, W., Linard, C., Chinson, P., Kasemsuwan, S., Visser, M., Gaughan, A. E., & Gilbert, M. (2016). Spatial analysis and characteristics of pig farming in Thailand. BMC Veterinary Research, 12, 1–15.

    Google Scholar 

  • Vandanjon, L., Grignon, M., Courois, E., Bourseau, P., & Jaouen, P. (2009). Fractionating white fish fillet hydrolysates by ultrafiltration and nanofiltration. Journal of Food Engineering, 95, 36–44.

    CAS  Google Scholar 

  • Wu, H. C., Chen, H. M., & Shiau, C. Y. (2003). Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Research International, 36, 949–957.

    CAS  Google Scholar 

  • Yan, J., Zhao, J., Yang, R., & Zhao, W. (2019). Bioactive peptides with antidiabetic properties: A review. International Journal of Food Science & Technology, 54, 1909–1919.

    CAS  Google Scholar 

  • Yoshikawa, C., Takano, F., Ishigaki, Y., Okada, M., & Kyo, S. (2013). Effect of porcine placental extract on collagen production in human skin fibroblasts in vitro. Gynecology & Obstetrics, 3, 1000186.

    Google Scholar 

  • You, L., Zhao, M., Regenstein, J. M., & Ren, J. (2010). Changes in the antioxidant activity of loach (Misgurnus anguillicaudatus) protein hydrolysates during a simulated gastrointestinal digestion. Food Chemistry, 120, 810–816.

    CAS  Google Scholar 

  • Yu, Z., Yin, Y., Zhao, W., Liu, J., & Chen, F. (2012). Anti-diabetic activity peptides from albumin against α-glucosidase and α-amylase. Food Chemistry, 135, 2078–2085.

    CAS  PubMed  Google Scholar 

  • Zamani, A., & Benjakul, S. (2016). Trypsin from unicorn leatherjacket (Aluterus monoceros) pyloric caeca: Purification and its use for preparation of fish protein hydrolysate with antioxidative activity. Journal of the Science of Food and Agriculture, 96, 962–969.

    CAS  PubMed  Google Scholar 

  • Zheng, P., Hao, G., Weng, W., & Ren, H. (2019). Antioxidant activities of hydrolysates from abalone viscera using subcritical water-assisted enzymatic hydrolysis. Food and Bioprocess Technology, 12, 910–918.

    CAS  Google Scholar 

  • Zhuang, Y., Sun, L., & Li, B. (2012). Production of the angiotensin-I-converting enzyme (ACE)-inhibitory peptide from hydrolysates of jellyfish (Rhopilema esculentum) collagen. Food and Bioprocess Technology, 5, 1622–1629.

    CAS  Google Scholar 

  • Zou, Y., Wang, W., Li, Q., Chen, Y., Zheng, D., Zou, Y., & Yang, L. (2016). Physicochemical, functional properties and antioxidant activities of porcine cerebral hydrolysate peptides produced by ultrasound processing. Process Biochemistry, 51, 431–443.

    CAS  Google Scholar 

Download references

Funding

This work was supported by the National Research Council of Thailand (NRCT) under the Research and Researchers for Industries (RRI) program, Thailand, and Shaw Kaset Rungrueng Co. Ltd., Nakhon Si Thammarat, Thailand (Grant no. PHD62I0014). This research was financially supported by the new strategic research project (P2P) fiscal year 2022, Walailak University, Thailand. The foundations supported this study had no role in the study design, data collection or analysis. The authors alone are responsible for the content and writing of this paper.

Author information

Authors and Affiliations

Authors

Contributions

P.L. conducted the experiment, collected the data and prepared the manuscript. S.C. and N.P. collected the data. W.P., M.C., S.R., A.P., L.C. and G.Y. assisted with the experiments and writing. W.P. designed the experiment, supervised the research and revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Worawan Panpipat.

Ethics declarations

Ethics Approval and Consent to Participate

This study did not include any human subjects and animal experiments. Consent to participate is not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laosam, P., Panpipat, W., Chaijan, M. et al. Molecular Structures and In Vitro Bioactivities of Enzymatically Produced Porcine Placenta Peptides Fractionated by Ultrafiltration. Food Bioprocess Technol 15, 669–682 (2022). https://doi.org/10.1007/s11947-022-02781-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-022-02781-9

Keywords

Navigation