Log in

UV-C Treatment of Apple and Grape Juices by Modified UV-C Reactor Based on Dean Vortex Technology: Microbial, Physicochemical and Sensorial Parameters Evaluation

  • Original Research
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

A laboratory-scale ultraviolet (UV-C) reactor based on Dean vortex technology was designed and tested for its capability to inactivate microorganisms in apple and red grape juices in relatively low doses of UV-C. Experiments were carried out with freshly squeezed apple juice (AJ) and freshly squeezed grape juice (GJ) inoculated with Lactobacillus plantarum NRIC1749 and Saccharomyces cerevisiae NCIB4932. Furthermore, physicochemical properties, antioxidant activity, total phenolic content, 5-HMF and colour analysis were performed in freshly squeezed apple (AJ) and grape juices (GJ). A UV-C treatment with 1668 mJ cm−2 led to an approximately 4.07-log inactivation of Lactobacillus plantarum NRIC1749 and 1.79-log inactivation of Saccharomyces cerevisiae NCIB4932 in AJ. A 0.69-log and 0.46-log reduction could be achieved for the inactivation of L. plantarum and S. cerevisiae in GJ at 1232 mJ cm−2, respectively. DPPH radical scavenging activity and total phenolic content of UV-C treated apple juice significantly increased, whereas total phenolic content remained constant in GJ. However, UV-C treatment had no significant effect on 5-HMF content of both juices. An effect of the treatment on the colour of both juices was observed. No significant change in the quality attributes (appearance, colour, odour, taste) was determined in the both UV-C treated juices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdul Karim Shah, N., Shamsudin, R., Abdul Rahman, R., & Adzahan, N. M. (2016). Fruit juice production using ultraviolet pasteurization: A review. Beverages, 2(3), 22. https://doi.org/10.3390/beverages2030022.

    Article  CAS  Google Scholar 

  • AIJN (2001). Code of Practice for Evaluation of Fruit and Vegetables Juices. Association of the industry of juices and nectars from fruits and vegetables of the European Union.

  • Alothman, M., Bhat, R., & Karim, A. A. (2009). Effects of radiation processing on phytochemicals and antioxidants in plant produce. Trends in Food Science & Technology, 20(5), 201–212.

    Article  CAS  Google Scholar 

  • Antonio-Gutiérrez, O. T., López-Díaz, A. S., López-Malo, A., Palou, E., and Ramírez-Corona, N. (2019). UV-C light for processing beverages: Principles, applications, and future trends. In Processing and Sustainability of Beverages (pp. 205-234). Woodhead Publishing.

  • Altug, T., & Elmacı, Y. (2005). Gıdalarda Duyusal Değerlendirme. Bornova-İzmir, Türkiye: Meta Press.

  • Arias, R., Lee, T. C., Logendra, L., & Janes, H. (2000). Correlation of lycopene measured by HPLC with the L*, a*, b* color readings of a hydroponic tomato and the relationship of maturity with color and lycopene content. Journal of Agricultural and Food Chemistry, 48(5), 1697–1702.

    Article  CAS  PubMed  Google Scholar 

  • Babsky, N. E., Toribio, J. L., & Lozano, J. E. (2006). Influence of Storage on the Composition of Clarified Apple Juice Concentrate. Journal of Food Science., 51, 564–567. https://doi.org/10.1111/j.1365-2621.1986.tb13879.x.

    Article  Google Scholar 

  • Balasundram, N., Sundram, K., & Samman, S. (2006). Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chemistry, 99(1), 191–203.

    Article  CAS  Google Scholar 

  • Bandla S., Choudhary R., Watson D. G., Haddock J., (2012). Impact of UV-C processing of raw cow milk treated in a continuous flow coiled tube ultraviolet reactor. Agriculture Eng Int: CIGR Journal, 14, 2, Manuscript No. 1943.

  • Başkaya Sezer, D., Erdoğan Tokatlı, K., & Demirdöven, A. (2016). Bullace and Yonuz Plum Marmalades. Journal of Agricultural Faculty of Gaziosmanpasa University, 33(1), 125–131.

    Article  Google Scholar 

  • Bhat, R., Ameran, S. B., Voon, H. C., Karim, A. A., & Tze, L. M. (2011). Quality attributes of starfruit (Averrhoa carambola L.) juice treated with ultraviolet radiation. Food Chemistry, 127(2), 641–644. https://doi.org/10.1016/j.foodchem.2011.01.042.

    Article  CAS  PubMed  Google Scholar 

  • Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free-radical method to evaluate antioxidant activity. Food Science and Technology-Lebensmittel-Wissenschaft & Technologie, 28(1), 25–30.

    Article  CAS  Google Scholar 

  • Brenes, M., Romero, C., Garcia, P., & Garrido, A. (1995). Effect of pH on the colour formed by Fe-phenolic complexes in ripe olive. J Sci Food Agric, 67(1), 35–41.

    Article  CAS  Google Scholar 

  • Caminiti, I. M., Noci, F., Munoz, A., Whyte, P., Morgan, D. J., Cronin, D. A., et al. (2011). Impact of selected combinations of non-thermal processing technologies on the quality of an apple and cranberry juice blend. Food Chemistry, 124(4), 1387–1392.

    Article  CAS  Google Scholar 

  • Chang, J. C. H., Ossoff, S. F., Lobe, D. C., Dorfman, M. H., Dumais, C. M., Qualls, R. G., & Johnson, J. D. (1985). UV inactivation of pathogenic and indicator microorganisms. Applied and Environmental Microbiology, 49(6), 1361–1365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cano-Lamadrid, M., Giron, I. F., Pleite, R., Burlo, F., Corell, M., Moriana, A., & Carbonel-Barrachina, A. A. (2015). Quality attributes of table olives as affected by regulated deficit irrigation. LWT Food Science and Technology, 62(1), 19–26.

    Article  CAS  Google Scholar 

  • Choudhary, R., Bandla, S., Watson, D. G., Haddock, J., Abughazaleh, A., & Bhattacharya, B. (2011). Performance of coiled tube ultraviolet reactors to inactivate Escherichia coli W1485 and Bacillus cereus endospores in raw cow milk and commercially processed skimmed cow milk. Journal of Food Engineering, 107(1), 14–20. https://doi.org/10.1016/j.jfoodeng.2011.06.009.

    Article  CAS  Google Scholar 

  • Cilliers, F. P., Gouws, P. A., Koutchma, T., Engelbrecht, Y., Adriaanse, C., & Swart, P. (2014). A microbiological, biochemical and sensory characterisation of bovine milk treated by heat and ultraviolet (UV) light for manufacturing Cheddar cheese. Innovative Food Science & Emerging Technologies, 23, 94–106.

    Article  CAS  Google Scholar 

  • CLSI, 2019. CLSI-performance standards for antimicrobial susceptibility testing. 29th ed. CLSI supplement M100. Wayne, PA: Clinical and Laboratory Standards Institute.

  • de Souza, P. M., & Fernandez, A. (2012). Consumer acceptance of UV-C treated liquid egg products and preparations with UV-C treated eggs. Innovative Food Science & Emerging Technologies, 14, 107–114.

    Article  Google Scholar 

  • Dean, W. R. 4 (1927) Motion of fluid in a curved pipe Philosophical Magazine and Journal of Science. p. 15.

  • Deed, R. C., Pilkington, L. I., Herbst-Johnstone, M., Miskelly, G. M., Barker, D., & Fedrizzi, B. (2019). A new analytical method to measure S-methyl-l-methionine in grape juice reveals the influence of yeast on dimethyl sulfide production during fermentation. J. Sci. Food Agric., 99(15), 6944–6953. https://doi.org/10.1002/jsfa.9983.

    Article  CAS  PubMed  Google Scholar 

  • Drilleau, J. F., & Prioult, C. (1971). Goüt de cuit et précence de 5-HMF dans les jus de pommes Etude en solutions modéles. Industries Alimentaires et Agricoles, 88(5), 699–704.

    CAS  Google Scholar 

  • Erkan, M., Wang, S. Y., & Wang, C. Y. (2008). Effect of UV treatment on antioxidant capacity, antioxidant enzyme activity and decay in strawberry fruit. Postharvest Biology and Technology, 48(2), 163–171.

    Article  CAS  Google Scholar 

  • Falguera, V., Pagan, J., & Ibarz, A. (2011). Effect of UV irradiation on enzymatic activities and physicochemical properties of apple juices from different varieties. LWT - Food Science and Technology, 44(1), 115–119.

    Article  CAS  Google Scholar 

  • Feng, M., Ghafoor, K., Seo, B., Yang, K., & Park, J. (2013). Effects of ultraviolet-C treatment in Teflon®-coil on microbial populations and physico-chemical characteristics of watermelon juice. Innovative Food Science and Emerging Technologies, 19, 133–139.

    Article  CAS  Google Scholar 

  • Ferrario, M., Alzamora, S. M., & Guerrero, S. (2015). Study of the inactivation of spoilage microorganisms in apple juice by pulsed light and ultrasound. Food Microbiology, 46, 635–642. https://doi.org/10.1016/j.fm.2014.06.017.

    Article  PubMed  Google Scholar 

  • Finjan, R. (2011). Characterization of a novel Taylor-Couette ultraviolet reactor for Non-thermal pasteurization of milk. Accessed 23 Oct 2019

  • Franke, S. I. R., Ckless, K., Silveira, J. D., Rubensam, G., Brendel, M., Erdtmann, B., & Henriques, J. A. P. (2004). Study of antioxidant and mutagenic activity of different orange juices. Food Chemistry, 88(1), 45–55. https://doi.org/10.1016/j.foodchem.2004.01.021.

    Article  CAS  Google Scholar 

  • Ghafoor, K., & Choi, Y. (2012). Polyphenoloxidase deactivation in juice from “Campbell Early” grapes by heating under vacuum pressure. Journal of Food Process Engineering, 35(3), 391–402.

    Article  CAS  Google Scholar 

  • Geankoplis, C. J. (2003). Transport processes and unit operations Transport processes and unit operations. Prentice Hall.

  • Geveke, D. J., & Torres, D. (2012). Pasteurization of grapefruit juice using a centrifugal ultraviolet light irradiator. Journal of Food Engineering, 111(2), 241–246.

    Article  CAS  Google Scholar 

  • Gök, S. B. (2018) Usage of gamma irradiation (γ) and ultraviolet (UV) radiaton in inactivation of the microorganisms of grape juice and the effects of operations on the quality of product. PhD Thesis. Namık Kemal University.

  • Guerreiro, D., Madureira, J., Silva, T., Melo, R., Santos, P. M. P., Ferreira, A., Trigo, M. J., Falcao, A. N., & Margaça, F. M. A. (2016). Post-harvest treatment of cherry tomatoes by gamma radiation: Microbial and physicochemical parameters evaluation. Innovative Food Science and Emerging Technologies, 36, 1–9.

    Article  CAS  Google Scholar 

  • Guerrero-Beltrán, J. A., & Barbosa-Cánovas, G. V. (2004). Advantages and limitations on processing foods by UV light. Food Science and Technology International, 10(3), 137–147.

    Article  Google Scholar 

  • Hakgüder, B. (2009). UV disinfection of Some of the fruit juices. Master Thesis. Food Engineering Department, İzmir Yüksek Teknoloji Enstitüsü

  • Ibarz A., Casero, T., Miguelsanz, R., Pagan, J (1989). Cineticas de formaci on de hidroximetilfurfural en concentrado de zumo de pera almacenado a diferentes temperaturas. Alimentaria 81-84.

  • Islam, M. S., Patras, A., Pokharel, B., Wu, Y., Vergne, M. J., Shade, L., **ao, H., & Sasges, M. (2016). UV-C irradiation as an alternative disinfection technique: Study of its effect on polyphenols and antioxidant activity of apple juice. Innovative Food Science and Emerging Technologies, 34, 344–351.

    Article  CAS  Google Scholar 

  • Jo, C., & Lee, K. H. (2012). Comparison of the efficacy of gamma and UV irradiation in sanitization of fresh carrot juice. Radiation Physics and Chemistry, 81(8), 1079–1081.

    Article  CAS  Google Scholar 

  • Karaman, K., Sağdıç, O., & Yılmaz, M. T. (2016). Multiple response surface optimization for effects of processing parameters on physicochemical and bioactive properties of apple juice inoculated with Zygosaccharomyces rouxii and Zygosaccharomyces bailii. LWT - Food Science and Technology, 69, 258–272.

    Article  CAS  Google Scholar 

  • Keeney, M., & Bassette, R. (1959). Detection of Intermediate Compounds in the Early Stages of Browning Reaction in Milk Products. J. Dairy Sci., 42, 945.

    Article  CAS  Google Scholar 

  • Khanizadeh, S., Tsao, R., Rekika, D., Yang, R., Charles, M. T., & Rupasinghe, H. P. V. (2008). Polyphenol composition and total antioxidant capacity of selected apple genotypes for processing. Journal of Food Composition and Analysis, 21(5), 396–401.

    Article  CAS  Google Scholar 

  • Ko, T. H., & Ting, K. (2006). Optimal Reynolds number for the fully developed laminar forced convection in a helical coiled tube. Energy, 31(12), 2142–2152. https://doi.org/10.1016/j.energy.2005.09.001.

    Article  CAS  Google Scholar 

  • Koutchma, T. (2009). Advances in ultraviolet light technology for non-thermal processing of liquid foods. Food and Bioprocess Technology, 2, 138–155.

    Article  CAS  Google Scholar 

  • Koutchma, T. (2008). UV light for processing foods. Science and Engineering, 30(1), 93–98. https://doi.org/10.1080/01919510701816346.

    Article  CAS  Google Scholar 

  • Koutchma, T., & Parisi, B. (2004). Biodosimetry of Escherichia coli UV inactivation in model juices with regard to dose distribution in annular UV reactors. Journal of Food Science, 69(1), 14–22.

    Google Scholar 

  • Koutchma, T., Paris, B., & Patazca, E. (2007a). Validation of UV coiled tube reactor for fresh juices. Journal of Environmental Engineering and Science, 6(3), 319–328. https://doi.org/10.1139/S06-058.

    Article  CAS  Google Scholar 

  • Koutchma, T., Parisi, B., & Patazca, E. (2007b). Validation of UV coiled tube reactor for fresh juices (doi:10.1139/S06-058). Journal of Environmental Engineering and Science, 6(3), 319–328. https://doi.org/10.1139/S06-058.

    Article  CAS  Google Scholar 

  • Koutchma, T., Keller, S., Chirtel, S., & Parisi, B. (2004). Ultraviolet disinfection of juice products in laminar and turbulent flow reactors. Innovative Food Science and Emerging Technologies, 5, 179–189.

    Article  Google Scholar 

  • Koutchma, T., L. J. Forney, & C. I. Moraru. (2009). Ultraviolet light in food technology: principles and applications, p. 69–101. CRC Press, Boca Raton, FL.

  • Liang, Z. W., Cheng, Z., & Mittal, G. S. (2006). Inactivation of spoilage microorganisms in apple cider using a continuous flow pulsed electric field system. Lwt-Food Science and Technology, 39(4), 351–357. https://doi.org/10.1016/j.lwt.2005.02.019.

    Article  CAS  Google Scholar 

  • Ma, S., Neilson, A., Lahne, J., Peck, G., O’Keefe, S., & Stewart, A. (2018). Free amino acid composition of apple juices with potential for cider making as determined by UPLC-PDA. Journal of the Institute of Brewing., 124(4), 467–476. https://doi.org/10.1002/jib.519.

    Article  CAS  Google Scholar 

  • Manzocco, L., Quarta, B., & Dri, A. (2009). Polyphenoloxidase inactivation by light exposure in model systems and apple derivatives. Innovative Food Science Emerging Technology, 10(4), 506–511.

    Article  CAS  Google Scholar 

  • Martins, S. I. F. S., Jongen, W. M. F., & van Boekel, M. A. J. S. (2000). A review of Maillard reaction in food and implications to kinetic modelling. Trends in Food Science & Technology, 11(9-10), 364–373.

    Article  CAS  Google Scholar 

  • Matak, K. E., Sumner, S. S., Duncan, S. E., Hoving, E., Worobo, R. W., Hackney, C. R., & Pierson, M. D. (2007). Effects of ultraviolet irradiation on chemical and sensory properties of goat milk. Journal of Dairy Science, 90(7), 3178–3186.

    Article  CAS  PubMed  Google Scholar 

  • Maturin, L. P. (2001). Bacteriological Analytical Manual. FDA.

  • Mert M. (2010). Effect of high hydrostatic pressure on microbial load and quality parameters of grape juice. Master Thesis. Middle East Technical University.

  • Mert, M., Buzrul, S., & Alpas, H. (2013). Effects of high hydrostatic pressure on microflora and some quality attributes of grape juice. High Pressure Research, 33, 55–63. https://doi.org/10.1080/08957959.2012.763035.

    Article  CAS  Google Scholar 

  • Müller, A., Noack, L., Greiner, R., Stahl, M. R., & Posten, C. (2014). Effect of UV-C and UV-B treatment on polyphenol oxidase activity and shelf life of apple and grape juices. Innovative Food Science and Emerging Technologies, 26, 498–504.

    Article  Google Scholar 

  • Müller, A., Stahl, M. R., Gräf, V., Franz, C. M. A. P., & Huch, M. (2011). UV-C treatment of juices to inactivate microorganisms using Dean vortex technology. Journal of Food Engineering, 107(2), 268–275. https://doi.org/10.1016/j.jfoodeng.2011.05.026.

    Article  CAS  Google Scholar 

  • Naresh, K., Varakumar, S., Variyar, P. S., Sharma, A., & Reddy, O. V. S. (2015). Effect of gamma-irradiation on physico-chemical and microbiological properties of mango (Mangifera indica L.) juice from eight Indian cultivars. Food Bioscience, 12, 1–9. https://doi.org/10.1016/j.fbio.2015.06.003.

    Article  CAS  Google Scholar 

  • Noci, F., Riener, J., Walking-Ribeiro, M., Cronin, D. A., Morgan, D. J., & Lyng, J. G. (2008). Ultraviolet irradiation and pulsed electric fields (PEF) in a hurdle strategy for the preservation of fresh apple juice. Journal of Food Engineering, 85(1), 141–146.

    Article  Google Scholar 

  • Oras, A., Akagic, A., Gasi, F., Spaho, N., Kurtovic, M., & Meland, M. (2017). Sensory evaluation of blended cloudy apple juices. Works of the Faculty of Agriculture and Food Sciencies, University of Sarajevo, 67, 493–504.

    Google Scholar 

  • Oteiza, J.M., Giannuzzi, L. and Zaritzky, N., 2009. Ultraviolet treatment of orange juice to inactivate E. coli O157:H7 as affected by native Microflora. Food Bioprocess Technol. Doi:https://doi.org/10.1007/s11947-009-0194-y.

  • Orlowska, M., Koutchma, T., Grapperhaus, M., Gallagher, J., Schaefer, R., & Defelice, C. (2013). Continuous and pulsed ultraviolet light for nonthermal treatment of liquid foods. Part 1: Effects on quality of fructose solution, apple juice, and milk. Food and Bioprocess Technology, 6(6), 1580–1592.

    Article  CAS  Google Scholar 

  • Pala, C. U., & Toklucu, A. K. (2013). Microbial, physicochemical and sensory properties of UV-C processed orange juice and its microbial stability during refrigerated storage. Lwt-Food Science and Technology, 50(2), 426–431.

    Article  CAS  Google Scholar 

  • Perkins-Veazie, P., Collins, J. K., & Howard, L. (2008). Blueberry fruit response to postharvest application of ultraviolet radiation. Postharvest Biology and Technology, 47(3), 280–285. https://doi.org/10.1016/j.postharvbio.2007.08.002.

    Article  CAS  Google Scholar 

  • Resnik, S., & Chirife, J. (1979). Effect of moisture content and temperature on some aspects of non-enzimatic browning in dehydrated apple. Journal of Food Science, 44(2), 601–605.

    Article  CAS  Google Scholar 

  • Ros-Polski, V., Popovic, V., & Koutchma, T. (2016). Effect of ultraviolet-C light treatment on hydroxymethylfurfural (5-HMF) content in high fructose corn syrup (HFCS) and model syrups. Journal of Food Engineering, 179, 78–87.

    Article  CAS  Google Scholar 

  • Seeram, N. P., Aviram, M., Zhang, Y., Henning, S. M., Feng, L., Dreher, M., & Heber, D. (2008). Comparison of antioxidant potency of commonly consumed polyphenol-rich beverages in the United States. Journal of Agricultural and Food Chemistry, 56(4), 1415–1422.

    Article  CAS  PubMed  Google Scholar 

  • Singleton, V. L. (1985). Citation Classic-Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Current Contents/Agriculture Biology & Environmental Sciences, 48, 18–18.

    Google Scholar 

  • Song, J. Q., Smart, R., Wang, H., Dambergs, B., Sparrow, A., & Qian, M. C. (2015). Effect of grape bunch sunlight exposure and UV radiation on phenolics and volatile composition of Vitis vinifera L. cv. Pinot noir wine. Food Chemistry, 173, 424–431. https://doi.org/10.1016/j.foodchem.2014.09.150.

    Article  CAS  PubMed  Google Scholar 

  • Tajchakavit, S., Ramaswamy, H. S., & Fustier, P. (1998). Enhanced destruction of spoilage microorganisms in apple juice during continuous flow microwave heating. Food Research International, 31(10), 713–722. https://doi.org/10.1016/S0963-9969(99)00050-2.

    Article  Google Scholar 

  • Taze, B. H., Unluturk, S., Buzrul, S., & Alpas, H. (2015). The impact of UV-C irradiation on spoilage microorganisms and colour of orange juice. Journal of Food Science and Technology-Mysore, 52(2), 1000–1007. https://doi.org/10.1007/s13197-013-1095-7.

    Article  CAS  Google Scholar 

  • Unluturk, S., & Atılgan, M. R. (2014). UV-C irradiation of freshly squeezed grape juice and modeling inactivation kinetics. Journal of Food Process Engineering, 37(4), 438–449.

    Article  CAS  Google Scholar 

  • Unluturk, S., Atilgan, M. R., Baysal, A. H., & Tari, C. (2008). Use of UV-C radiation as a non-thermal process for liquid egg products (LEP). Journal of Food Engineering, 85(4), 561–568. https://doi.org/10.1016/j.jfoodeng.2007.08.017.

    Article  Google Scholar 

  • Watts, B. (1989). Basic sensory methods for food evaluation. International Development Research Centre.

  • VdF, 1987. RSK-Values. The complete manual. Verband der deutschen Fruchtsaffindustrie e.v.

Download references

Funding

This study was supported by the Scientific Research Foundation, Tekirdağ Namık Kemal University, Turkey (Project No: NKUBAP.00.24.AR.13.25). The authors gratefully acknowledge all this support given for the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sıla Barut Gök.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barut Gök, S. UV-C Treatment of Apple and Grape Juices by Modified UV-C Reactor Based on Dean Vortex Technology: Microbial, Physicochemical and Sensorial Parameters Evaluation. Food Bioprocess Technol 14, 1055–1066 (2021). https://doi.org/10.1007/s11947-021-02624-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-021-02624-z

Keywords

Navigation