Log in

Multiparametric Magnetic Resonance Imaging in the Management and Diagnosis of Prostate Cancer: Current Applications and Strategies

  • Prostate Cancer (D Parekh, Section Editor)
  • Published:
Current Urology Reports Aims and scope Submit manuscript

Abstract

Magnetic resonance imaging (MRI) has become increasingly used worldwide in the diagnosis and management of prostate cancer. With advances in multiparametric MRI (mpMRI) technology, such as the use of dynamic contrast-enhanced and diffusion-weighted imaging sequences, observational studies have evaluated the utility for mpMRI in the continuum of prostate cancer management, from improving the detection of clinically significant prostate cancer, to planning radical prostatectomy and radiation therapy and the early detection of local recurrence. Furthermore, the potential for advanced imaging to reduce the burden of routine serial prostate needle biopsies for men on active surveillance is a promising area of research. MRI technology continues to evolve, and the potential applications in the management of prostate cancer care will require well-designed multi-institutional prospective clinical trials and rigorous efforts to standardize reporting and improve dissemination of expertise across institutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

• Of importance •• Of major importance

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    PubMed  Google Scholar 

  2. Shariat S, Kattan M, Vickers A, Karakiewicz P, Scardino P. Critical review of prostate cancer predictive tools. Future Oncol. 2009;5:1555–84.

    PubMed Central  PubMed  Google Scholar 

  3. Lu-Yao GL, Albertsen PC, Moore DF, et al. Outcomes of localized prostate cancer following conservative management. JAMA. 2009;302:1202–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Resnick MJ, Koyama T, Fan KH, et al. Long-term functional outcomes after treatment for localized prostate cancer. N Engl J Med. 2013;368:436–45. Important study highlighting the quality of life after radiation therapy and prostatectomy for PCa.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Andriole GL, Crawford ED, Grubb 3rd RL, et al. Prostate cancer screening in the randomized Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial: mortality results after 13 years of follow-up. J Natl Cancer Inst. 2012;104:125–32.

    PubMed  Google Scholar 

  6. Schroder FH, Hugosson J, Roobol MJ, et al. Prostate-cancer mortality at 11 years of follow-up. N Engl J Med. 2012;366:981–90.

    PubMed  Google Scholar 

  7. Chou R, Croswell JM, Dana T, et al. Screening for prostate cancer: a review of the evidence for the U.S. Preventive Services Task Force. Ann Intern Med. 2011;155:762–71.

    PubMed  Google Scholar 

  8. Stephenson AJ, Scardino PT, Eastham JA, et al. Preoperative nomogram predicting the 10-year probability of prostate cancer recurrence after radical prostatectomy. J Natl Cancer Inst. 2006;98:715–7.

    PubMed Central  PubMed  Google Scholar 

  9. Stephenson AJ, Kattan MW, Eastham JA, et al. Prostate cancer-specific mortality after radical prostatectomy for patients treated in the prostate-specific antigen era. J Clin Oncol. 2009;27:4300–5.

    PubMed  Google Scholar 

  10. Briganti A, Larcher A, Abdollah F, et al. Updated nomogram predicting lymph node invasion in patients with prostate cancer undergoing extended pelvic lymph node dissection: the essential importance of percentage of positive cores. Eur Urol. 2012;61:480–7.

    PubMed  Google Scholar 

  11. Epstein JI, Walsh PC, Carmichael M, Brendler CB. Pathologic and clinical findings to predict tumor extent of nonpalpable (stage T1c) prostate cancer. JAMA. 1994;271:368–74.

    CAS  PubMed  Google Scholar 

  12. Klotz L, Zhang L, Lam A, Nam R, Mamedov A, Loblaw A. Clinical results of long-term follow-up of a large, active surveillance cohort with localized prostate cancer. J Clin Oncol. 2010;28:126–31. An important active surveillance cohort with mature data and long-term follow-up.

    PubMed  Google Scholar 

  13. Conti SL, Dall'era M, Fradet V, Cowan JE, Simko J, Carroll PR. Pathological outcomes of candidates for active surveillance of prostate cancer. J Urol. 2009;181:1628–33. discussion 33-4.

    PubMed  Google Scholar 

  14. Cohen MS, Hanley RS, Kurteva T, et al. Comparing the Gleason prostate biopsy and Gleason prostatectomy grading system: the Lahey Clinic Medical Center experience and an international meta-analysis. Eur Urol. 2008;54:371–81.

    PubMed  Google Scholar 

  15. Komai Y, Numao N, Yoshida S, et al. High diagnostic ability of multiparametric magnetic resonance imaging to detect anterior prostate cancer missed by transrectal 12-core biopsy. J Urol. 2013;190:867–73.

    PubMed  Google Scholar 

  16. Ehdaie B, Vertosick E, Spaliviero M, et al. The Impact of Repeat Biopsies on Infectious Complications in Men with Prostate Cancer on Active Surveillance. J Urol. Sep 6.

  17. Wagenlehner FM, van Oostrum E, Tenke P, et al. Infective complications after prostate biopsy: outcome of the Global Prevalence Study of Infections in Urology (GPIU) 2010 and 2011, a prospective multinational multicentre prostate biopsy study. Eur Urol. Mar: 63:521-7.

  18. Aus G, Abbou CC, Bolla M, et al. EAU guidelines on prostate cancer. Eur Urol. 2005;48:546–51.

    CAS  PubMed  Google Scholar 

  19. Heidenreich A, Bellmunt J, Bolla M, et al. EAU guidelines on prostate cancer. Part 1: screening, diagnosis, and treatment of clinically localised disease. Eur Urol. 2011;59:61–71.

    PubMed  Google Scholar 

  20. Onik G. The male lumpectomy: rationale for a cancer targeted approach for prostate cryoablation. A review. Technol Cancer Res Treat. 2004;3:365–70.

    PubMed  Google Scholar 

  21. Uchida T, Ohkusa H, Nagata Y, Hyodo T, Satoh T, Irie A. Treatment of localized prostate cancer using high-intensity focused ultrasound. BJU Int. 2006;97:56–61.

    PubMed  Google Scholar 

  22. Moore CM, Hoh IM, Bown SG, Emberton M. Does photodynamic therapy have the necessary attributes to become a future treatment for organ-confined prostate cancer? BJU Int. 2005;96:754–8.

    CAS  PubMed  Google Scholar 

  23. Ikonen S, Karkkainen P, Kivisaari L, et al. Magnetic resonance imaging of clinically localized prostatic cancer. J Urol. 1998;159:915–9.

    CAS  PubMed  Google Scholar 

  24. Scheidler J, Hricak H, Vigneron DB, et al. Prostate cancer: localization with three-dimensional proton MR spectroscopic imaging–clinicopathologic study. Radiology. 1999;213:473–80.

    CAS  PubMed  Google Scholar 

  25. Hricak H, White S, Vigneron D, et al. Carcinoma of the prostate gland: MR imaging with pelvic phased-array coils versus integrated endorectal–pelvic phased-array coils. Radiology. 1994;193:703–9.

    CAS  PubMed  Google Scholar 

  26. Rifkin MD, Zerhouni EA, Gatsonis CA, et al. Comparison of magnetic resonance imaging and ultrasonography in staging early prostate cancer. Results of a multi-institutional cooperative trial. N Engl J Med. 1990;323:621–6.

    CAS  PubMed  Google Scholar 

  27. Carter HB, Brem RF, Tempany CM, et al. Nonpalpable prostate cancer: detection with MR imaging. Radiology. 1991;178:523–5.

    CAS  PubMed  Google Scholar 

  28. Quinn SF, Franzini DA, Demlow TA, et al. MR imaging of prostate cancer with an endorectal surface coil technique: correlation with whole-mount specimens. Radiology. 1994;190:323–7.

    CAS  PubMed  Google Scholar 

  29. Ellis JH, Tempany C, Sarin MS, Gatsonis C, Rifkin MD, McNeil BJ. MR imaging and sonography of early prostatic cancer: pathologic and imaging features that influence identification and diagnosis. AJR Am J Roentgenol. 1994;162:865–72.

    CAS  PubMed  Google Scholar 

  30. Noguchi M, Stamey TA, Neal JE, Yemoto CE. An analysis of 148 consecutive transition zone cancers: clinical and histological characteristics. J Urol. 2000;163:1751–5.

    CAS  PubMed  Google Scholar 

  31. Al-Ahmadie HA, Tickoo SK, Olgac S, et al. Anterior-predominant prostatic tumors: zone of origin and pathologic outcomes at radical prostatectomy. Am J Surg Pathol. 2008;32:229–35.

    PubMed  Google Scholar 

  32. McNeal JE, Redwine EA, Freiha FS, Stamey TA. Zonal distribution of prostatic adenocarcinoma. Correlation with histologic pattern and direction of spread. Am J Surg Pathol. 1988;12:897–906.

    CAS  PubMed  Google Scholar 

  33. Lawrentschuk N, Haider MA, Daljeet N, et al. Prostatic evasive anterior tumours': the role of magnetic resonance imaging. BJU Int. 2010;105:1231–6.

    PubMed  Google Scholar 

  34. Lemaitre L, Puech P, Poncelet E, et al. Dynamic contrast-enhanced MRI of anterior prostate cancer: morphometric assessment and correlation with radical prostatectomy findings. Eur Radiol. 2009;19:470–80.

    PubMed  Google Scholar 

  35. Roethke MC, Lichy MP, Jurgschat L, et al. Tumorsize dependent detection rate of endorectal MRI of prostate cancer–a histopathologic correlation with whole-mount sections in 70 patients with prostate cancer. Eur J Radiol. 2011;79:189–95.

    PubMed  Google Scholar 

  36. Jager GJ, Ruijter ET, van de Kaa CA, et al. Dynamic TurboFLASH subtraction technique for contrast-enhanced MR imaging of the prostate: correlation with histopathologic results. Radiology. 1997;203:645–52.

    CAS  PubMed  Google Scholar 

  37. Haider MA, van der Kwast TH, Tanguay J, et al. Combined T2-weighted and diffusion-weighted MRI for localization of prostate cancer. AJR Am J Roentgenol. 2007;189:323–8.

    PubMed  Google Scholar 

  38. Turkbey B, Mani H, Shah V, et al. Multiparametric 3T prostate magnetic resonance imaging to detect cancer: histopathological correlation using prostatectomy specimens processed in customized magnetic resonance imaging based molds. J Urol. 2011;186:1818–24.

    PubMed  Google Scholar 

  39. Nagarajan R, Margolis D, Raman S, et al. Correlation of Gleason scores with diffusion-weighted imaging findings of prostate cancer. Adv Urol. 2012;2012:374805.

    PubMed Central  PubMed  Google Scholar 

  40. Gleason DF. Histologic grading of prostate cancer: a perspective. Hum Pathol. 1992;23:273–9.

    CAS  PubMed  Google Scholar 

  41. Verma S, Rajesh A, Morales H, et al. Assessment of aggressiveness of prostate cancer: correlation of apparent diffusion coefficient with histologic grade after radical prostatectomy. AJR Am J Roentgenol. 2011;196:374–81.

    PubMed  Google Scholar 

  42. Hambrock T, Somford DM, Huisman HJ, et al. Relationship between apparent diffusion coefficients at 3.0-T MR imaging and Gleason grade in peripheral zone prostate cancer. Radiology. 2011;259:453–61.

    PubMed  Google Scholar 

  43. de Souza NM, Riches SF, Vanas NJ, et al. Diffusion-weighted magnetic resonance imaging: a potential non-invasive marker of tumour aggressiveness in localized prostate cancer. Clin Radiol. 2008;63:774–82.

    Google Scholar 

  44. Tamada T, Sone T, Jo Y, et al. Apparent diffusion coefficient values in peripheral and transition zones of the prostate: comparison between normal and malignant prostatic tissues and correlation with histologic grade. J Magn Reson Imaging. 2008;28:720–6.

    PubMed  Google Scholar 

  45. Somford DM, Hambrock T, Hulsbergen-van de Kaa CA, et al. Initial experience with identifying high-grade prostate cancer using diffusion-weighted MR imaging (DWI) in patients with a Gleason score </= 3 + 3 = 6 upon schematic TRUS-guided biopsy: a radical prostatectomy correlated series. Invest Radiol. 2012;47(3):153–8.

    PubMed  Google Scholar 

  46. Kirkham AP, Haslam P, Keanie JY, et al. Prostate MRI: Who, when, and how? Report from a UK consensus meeting. Clin Radiol. 2013;68:1016–23.

    Google Scholar 

  47. Labanaris AP, Zugor V, Takriti S, et al. The role of conventional and functional endorectal magnetic resonance imaging in the decision of whether to preserve or resect the neurovascular bundles during radical retropubic prostatectomy. Scand J Urol Nephrol. 2009;43:25–31.

    PubMed  Google Scholar 

  48. Westphalen AC, Coakley FV, Roach 3rd M, McCulloch CE, Kurhanewicz J. Locally recurrent prostate cancer after external beam radiation therapy: diagnostic performance of 1.5-T endorectal MR imaging and MR spectroscopic imaging for detection. Radiology. 2010;256:485–92.

    PubMed  Google Scholar 

  49. van As NJ, Norman AR, Thomas K, et al. Predicting the probability of deferred radical treatment for localised prostate cancer managed by active surveillance. Eur Urol. 2008;54:1297–305.

    PubMed  Google Scholar 

  50. Carter HB, Kettermann A, Warlick C, et al. Expectant management of prostate cancer with curative intent: an update of the Johns Hopkins experience. J Urol. 2007;178:2359–64. discussion 64-5.

    PubMed  Google Scholar 

  51. Roemeling S, Roobol MJ, de Vries SH, et al. Active surveillance for prostate cancers detected in three subsequent rounds of a screening trial: characteristics, PSA doubling times, and outcome. Eur Urol. 2007;51:1244–50. discussion 51.

    PubMed  Google Scholar 

  52. Khatami A, Aus G, Damber JE, Lilja H, Lodding P, Hugosson J. PSA doubling time predicts the outcome after active surveillance in screening-detected prostate cancer: results from the European randomized study of screening for prostate cancer, Sweden section. Int J Cancer. 2007;120:170–4.

    PubMed  Google Scholar 

  53. Vargas HA, Akin O, Afaq A, et al. Magnetic resonance imaging for predicting prostate biopsy findings in patients considered for active surveillance of clinically low risk prostate cancer. J Urol. 2012;188:1732–8. The use of MRI imaging improved the prediction of the biopsy result, which could potentially be an important application in active surveillance.

    PubMed  Google Scholar 

  54. Kattan MW, Eastham JA, Wheeler TM, et al. Counseling men with prostate cancer: a nomogram for predicting the presence of small, moderately differentiated, confined tumors. J Urol. 2003;170:1792–7.

    PubMed  Google Scholar 

  55. Carter HB, Sauvageot J, Walsh PC, Epstein JI. Prospective evaluation of men with stage T1C adenocarcinoma of the prostate. J Urol. 1997;157:2206–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Kattan MW, Marasco J. What is a real nomogram? Semin Oncol. 2010;37:23–6.

    PubMed  Google Scholar 

  57. Epstein JI, Sanderson H, Carter HB, Scharfstein DO. Utility of saturation biopsy to predict insignificant cancer at radical prostatectomy. Urology. 2005;66:356–60.

    PubMed  Google Scholar 

  58. Wang L, Hricak H, Kattan MW, Chen HN, Scardino PT, Kuroiwa K. Prediction of organ-confined prostate cancer: incremental value of MR imaging and MR spectroscopic imaging to staging nomograms. Radiology. 2006;238:597–603.

    PubMed  Google Scholar 

  59. Wang L, Hricak H, Kattan MW, et al. Prediction of seminal vesicle invasion in prostate cancer: incremental value of adding endorectal MR imaging to the Kattan nomogram. Radiology. 2007;242:182–8.

    PubMed  Google Scholar 

  60. Hoeks CM, Barentsz JO, Hambrock T, et al. Prostate cancer: multiparametric MR imaging for detection, localization, and staging. Radiology. 2011;261:46–66.

    PubMed  Google Scholar 

  61. Shukla-Dave A, Hricak H, Kattan MW, et al. The utility of magnetic resonance imaging and spectroscopy for predicting insignificant prostate cancer: an initial analysis. BJU Int. 2007;99:786–93.

    CAS  PubMed  Google Scholar 

  62. Shukla-Dave A, Hricak H, Akin O, et al. Preoperative nomograms incorporating magnetic resonance imaging and spectroscopy for prediction of insignificant prostate cancer. BJU Int. 2012;109:1315–22. A significant improvement was noted in the AUC in predicting high-risk disease after incorporating MRI to the preoperative nomograms.

    PubMed Central  PubMed  Google Scholar 

  63. Stamatakis L, Siddiqui MM, Nix JW, et al. Accuracy of multiparametric magnetic resonance imaging in confirming eligibility for active surveillance for men with prostate cancer. Cancer. 2013;119:3359–66.

    PubMed  Google Scholar 

  64. Morgan VA, Riches SF, Thomas K, et al. Diffusion-weighted magnetic resonance imaging for monitoring prostate cancer progression in patients managed by active surveillance. Br J Radiol. 2011;84:31–7.

    CAS  PubMed  Google Scholar 

  65. Stevens DM, Moore C, Ahmed H, et al. The natural history of untreated prostate MRI lesions in an active surveillance prostate cancer population: 260 patient years. Eur Urol. 1996;11 Suppl 2012:e1096–e196.

    Google Scholar 

  66. Robertson NL, Moore CM, Ambler G, et al. MAPPED study design: a 6 month randomised controlled study to evaluate the effect of dutasteride on prostate cancer volume using magnetic resonance imaging. Contemp Clin Trials. 2013;34:80–9.

    CAS  PubMed  Google Scholar 

  67. Moore CM, Robertson NL, Arsanious N, et al. Image-guided prostate biopsy using magnetic resonance imaging-derived targets: a systematic review. Eur Urol. 2013;63:125–40.

    PubMed  Google Scholar 

  68. Haffner J, Lemaitre L, Puech P, et al. Role of magnetic resonance imaging before initial biopsy: comparison of magnetic resonance imaging-targeted and systematic biopsy for significant prostate cancer detection. BJU Int. 2011;108:E171–8.

    PubMed  Google Scholar 

  69. Park BK, Park JW, Park SY, et al. Prospective evaluation of 3-T MRI performed before initial transrectal ultrasound-guided prostate biopsy in patients with high prostate-specific antigen and no previous biopsy. AJR Am J Roentgenol. 2011;197:W876–81.

    PubMed  Google Scholar 

  70. Watanabe Y, Terai A, Araki T, et al. Detection and localization of prostate cancer with the targeted biopsy strategy based on ADC map: a prospective large-scale cohort study. J Magn Reson Imaging. 2012;35:1414–21. Large prospective trial of 1400 men to assess the cancer detection rate using ADC maps.

    PubMed Central  PubMed  Google Scholar 

  71. Moore CM, Kasivisvanathan V, Eggener S, et al. Standards of Reporting for MRI-targeted Biopsy Studies (START) of the Prostate: Recommendations from an International Working Group. Eur Urol. 2013;64:544–52.

    PubMed  Google Scholar 

  72. Hambrock T, Hoeks C, Hulsbergen-van de Kaa C, et al. Prospective Assessment of Prostate Cancer Aggressiveness Using 3-T Diffusion-Weighted Magnetic Resonance Imaging-Guided Biopsies Versus a Systematic 10-Core Transrectal Ultrasound Prostate Biopsy Cohort. Eur Urol. 2012;61(1):177–84.

  73. Siddiqui MM, Rais-Bahrami S, Truong H, et al. Magnetic Resonance Imaging/Ultrasound-Fusion Biopsy Significantly Upgrades Prostate Cancer Versus Systematic 12-core Transrectal Ultrasound Biopsy. Eur Urol. 2013;64:713–9. Prospective trial of 580 patients that found increased detection of clinically significant PCa by utilizing MR-guided biopsies.

    PubMed  Google Scholar 

  74. Arumainayagam N, Ahmed HU, Moore CM, et al. Multiparametric MR Imaging for Detection of Clinically Significant Prostate Cancer: A Validation Cohort Study with Transperineal Template Prostate Map** as the Reference Standard. Radiology. 2013;268:761–9.

    PubMed  Google Scholar 

  75. Hambrock T, Somford DM, Hoeks C, et al. Magnetic resonance imaging guided prostate biopsy in men with repeat negative biopsies and increased prostate specific antigen. J Urol. 2010;183:520–7.

    CAS  PubMed  Google Scholar 

  76. Sciarra A, Panebianco V, Ciccariello M, et al. Value of magnetic resonance spectroscopy imaging and dynamic contrast-enhanced imaging for detecting prostate cancer foci in men with prior negative biopsy. Clin Cancer Res. 2010;16:1875–83.

    CAS  PubMed  Google Scholar 

  77. Prando A, Kurhanewicz J, Borges AP, Oliveira Jr EM, Figueiredo E. Prostatic biopsy directed with endorectal MR spectroscopic imaging findings in patients with elevated prostate specific antigen levels and prior negative biopsy findings: early experience. Radiology. 2005;236:903–10.

    PubMed  Google Scholar 

  78. Busetto GM, De Berardinis E, Sciarra A, et al. Prostate Cancer Gene 3 and Multiparametric Magnetic Resonance Can Reduce Unnecessary Biopsies: Decision Curve Analysis to Evaluate Predictive Models. Urology. 2013;82(6):1355–62.

    Google Scholar 

  79. Sciarra A, Panebianco V, Cattarino S, et al. Multiparametric magnetic resonance imaging of the prostate can improve the predictive value of the urinary prostate cancer antigen 3 test in patients with elevated prostate-specific antigen levels and a previous negative biopsy. BJU Int. 2012;110:1661–5.

    PubMed  Google Scholar 

  80. Qayyum A, Coakley FV, Lu Y, et al. Organ-confined prostate cancer: effect of prior transrectal biopsy on endorectal MRI and MR spectroscopic imaging. AJR Am J Roentgenol. 2004;183:1079–83.

    PubMed  Google Scholar 

  81. Tamada T, Sone T, Jo Y, et al. Prostate cancer: relationships between postbiopsy hemorrhage and tumor detectability at MR diagnosis. Radiology. 2008;248:531–9.

    PubMed  Google Scholar 

  82. White S, Hricak H, Forstner R, et al. Prostate cancer: effect of postbiopsy hemorrhage on interpretation of MR images. Radiology. 1995;195:385–90.

    CAS  PubMed  Google Scholar 

  83. Cox JD, Gallagher MJ, Hammond EH, Kaplan RS, Schellhammer PF. Consensus statements on radiation therapy of prostate cancer: guidelines for prostate re-biopsy after radiation and for radiation therapy with rising prostate-specific antigen levels after radical prostatectomy. American Society for Therapeutic Radiology and Oncology Consensus Panel. J Clin Oncol. 1999;17:1155.

    CAS  PubMed  Google Scholar 

  84. Amling CL, Bergstralh EJ, Blute ML, Slezak JM, Zincke H. Defining prostate specific antigen progression after radical prostatectomy: what is the most appropriate cut point? J Urol. 2001;165:1146–51.

    CAS  PubMed  Google Scholar 

  85. Sella T, Schwartz LH, Swindle PW, et al. Suspected local recurrence after radical prostatectomy: endorectal coil MR imaging. Radiology. 2004;231:379–85.

    PubMed  Google Scholar 

  86. Cirillo S, Petracchini M, Scotti L, et al. Endorectal magnetic resonance imaging at 1.5 Tesla to assess local recurrence following radical prostatectomy using T2-weighted and contrast-enhanced imaging. Eur Radiol. 2009;19:761–9.

    PubMed  Google Scholar 

  87. Casciani E, Polettini E, Carmenini E, et al. Endorectal and dynamic contrast-enhanced MRI for detection of local recurrence after radical prostatectomy. AJR Am J Roentgenol. 2008;190:1187–92.

    PubMed  Google Scholar 

  88. Crook J, Robertson S, Collin G, Zaleski V, Esche B. Clinical relevance of trans-rectal ultrasound, biopsy, and serum prostate-specific antigen following external beam radiotherapy for carcinoma of the prostate. Int J Radiat Oncol Biol Phys. 1993;27:31–7.

    CAS  PubMed  Google Scholar 

  89. Kim CK, Park BK, Park W, Kim SS. Prostate MR imaging at 3T using a phased-arrayed coil in predicting locally recurrent prostate cancer after radiation therapy: preliminary experience. Abdom Imaging. 2010;35:246–52.

    PubMed  Google Scholar 

  90. Haider MA, Chung P, Sweet J, et al. Dynamic contrast-enhanced magnetic resonance imaging for localization of recurrent prostate cancer after external beam radiotherapy. Int J Radiat Oncol Biol Phys. 2008;70:425–30.

    PubMed  Google Scholar 

  91. Kara T, Akata D, Akyol F. Karcaaltincaba M, Ozmen M. The value of dynamic contrast-enhanced MRI in the detection of recurrent prostate cancer after external beam radiotherapy: correlation with transrectal ultrasound and pathological findings. Diagn Interv Radiol. 2011;17:38–43.

    PubMed  Google Scholar 

  92. Arumainayagam N, Kumaar S, Ahmed HU, et al. Accuracy of multiparametric magnetic resonance imaging in detecting recurrent prostate cancer after radiotherapy. BJU Int. 2010;106:991–7.

    PubMed  Google Scholar 

  93. De Visschere PJ, De Meerleer GO, Futterer JJ, Villeirs GM. Role of MRI in follow-up after focal therapy for prostate carcinoma. AJR Am J Roentgenol. 2010;194:1427–33.

    PubMed  Google Scholar 

  94. Meiers I, Waters DJ, Bostwick DG. Preoperative prediction of multifocal prostate cancer and application of focal therapy: review 2007. Urology. 2007;70:3–8.

    PubMed  Google Scholar 

  95. Rieke V, Kinsey AM, Ross AB, et al. Referenceless MR thermometry for monitoring thermal ablation in the prostate. IEEE Trans Med Imaging. 2007;26:813–21.

    PubMed Central  PubMed  Google Scholar 

  96. Acher P, Rhode K, Morris S, et al. Comparison of combined x-ray radiography and magnetic resonance (XMR) imaging-versus computed tomography-based dosimetry for the evaluation of permanent prostate brachytherapy implants. Int J Radiat Oncol Biol Phys. 2008;71:1518–25.

    PubMed  Google Scholar 

  97. Barkati M, Van Dyk S, Foroudi F, Narayan K. The use of magnetic resonance imaging for image-guided brachytherapy. J Med Imaging Radiat Oncol. 2010;54:137–41.

    CAS  PubMed  Google Scholar 

  98. Pauly KB, Diederich CJ, Rieke V, et al. Magnetic resonance-guided high-intensity ultrasound ablation of the prostate. Top Magn Reson Imaging. 2006;17:195–207.

    PubMed  Google Scholar 

  99. Stafford RJ, Fuentes D, Elliott AA, Weinberg JS, Ahrar K. Laser-induced thermal therapy for tumor ablation. Crit Rev Biomed Eng. 2010;38:79–100.

    PubMed  Google Scholar 

  100. Rosenkrantz AB, Scionti SM, Mendrinos S, Taneja SS. Role of MRI in minimally invasive focal ablative therapy for prostate cancer. AJR Am J Roentgenol. 2011;197:W90–6.

    PubMed  Google Scholar 

  101. Vellet AD, Saliken J, Donnelly B, et al. Prostatic cryosurgery: use of MR imaging in evaluation of success and technical modifications. Radiology. 1997;203:653–9.

    CAS  PubMed  Google Scholar 

  102. Cirillo S, Petracchini M, D'Urso L, et al. Endorectal magnetic resonance imaging and magnetic resonance spectroscopy to monitor the prostate for residual disease or local cancer recurrence after transrectal high-intensity focused ultrasound. BJU Int. 2008;102:452–8.

    PubMed  Google Scholar 

  103. Ben Cheikh A, Girouin N, Ryon-Taponnier P, et al. [MR detection of local prostate cancer recurrence after transrectal high-intensity focused US treatment: preliminary results]. J Radiol. 2008;89:571–7.

    CAS  PubMed  Google Scholar 

  104. Punwani S, Emberton M, Walkden M, et al. Prostatic cancer surveillance following whole-gland high-intensity focused ultrasound: comparison of MRI and prostate-specific antigen for detection of residual or recurrent disease. Br J Radiol. 2012;85:720–8.

    CAS  PubMed  Google Scholar 

  105. Azzouzi AR, Barret E, Moore CM, et al. TOOKAD((R)) Soluble vascular-targeted photodynamic (VTP) therapy: determination of optimal treatment conditions and assessment of effects in patients with localised prostate cancer. BJU Int. 2013;112:766–74.

    CAS  PubMed  Google Scholar 

  106. Barentsz JO, Richenberg J, Clements R, et al. ESUR prostate MR guidelines 2012. Eur Radiol. 2012;22:746–57.

    PubMed Central  PubMed  Google Scholar 

  107. Dickinson L, Ahmed HU, Allen C, et al. Magnetic resonance imaging for the detection, localisation, and characterisation of prostate cancer: recommendations from a European consensus meeting. Eur Urol. 2011;59:477–94.

    PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Dr. Daniel J. Lee, Dr. Hashim U. Ahmed, Dr. Caroline M. Moore, Dr. Mark Emberton, and Dr. Behfar Ehdaie each declare no potential conflict of interest relevant to this article.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behfar Ehdaie.

Additional information

This article is part of the Topical Collection on Prostate Cancer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, D.J., Ahmed, H.U., Moore, C.M. et al. Multiparametric Magnetic Resonance Imaging in the Management and Diagnosis of Prostate Cancer: Current Applications and Strategies. Curr Urol Rep 15, 390 (2014). https://doi.org/10.1007/s11934-013-0390-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11934-013-0390-1

Keywords

Navigation