Log in

Defects in Bone and Bone Marrow in Inherited Anemias: the Chicken or the Egg

  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Recently, there has been an increasing number of studies on the crosstalk between the bone and the bone marrow and how it pertains to anemia. Here, we discuss four heritable clinical syndromes contrasting those in which anemia affects bone growth and development, with those in which abnormal bone development results in anemia, highlighting the multifaceted interactions between skeletal development and hematopoiesis.

Recent Findings

Anemia results from both inherited and acquired disorders caused by either impaired production or premature destruction of red blood cells or blood loss. The downstream effects on bone development and growth in patients with anemia often constitute an important part of their clinical condition. We will discuss the interdependence of abnormal bone development and growth and hematopoietic abnormalities, with a focus on the erythroid lineage. To illustrate those points, we selected four heritable anemias that arise from either defective hematopoiesis impacting the skeletal system (the hemoglobinopathies β-thalassemia and sickle cell disease) versus defective osteogenesis resulting in impaired hematopoiesis (osteopetrosis). Finally, we will discuss recent findings in Diamond Blackfan anemia, an intrinsic disorder of both the erythron and the bone.

Summary

By focusing on four representative hereditary hematopoietic disorders, this complex relationship between bone and blood should lead to new areas of research in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Shimamura A, Alter BP. Pathophysiology and management of inherited bone marrow failure syndromes. Blood Rev. 2010;24(3):101–22. https://doi.org/10.1016/j.blre.2010.03.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. • Vlachos A, Blanc L, Lipton JM. Diamond Blackfan anemia: a model for the translational approach to understanding human disease. Expert Rev Hematol. 2014;7(3):359–72. https://doi.org/10.1586/17474086.2014.897923. (A still timely review describing the pathophysiology of Diamond Blackfan anemia in a clinical context)

    Article  CAS  PubMed  Google Scholar 

  3. Ning S, Zeller MP. Management of iron deficiency. Hematology Am Soc Hematol Educ Program. 2019;2019(1):315–22. https://doi.org/10.1182/hematology.2019000034.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Niss O, Quinn CT. Classification and diagnosis of anemia in children and neonates in Lanzkowsky's Manual of Pediatric Hematology and Oncology, Seventh ed. Fish, JD, Lipton, JM, Lanzkowsky (Eds.), Academic Press, Elsevier Inc. London, United Kingdom.

  5. Toxqui L, Vaquero MP. Chronic iron deficiency as an emerging risk factor for osteoporosis: a hypothesis. Nutrients. 2015;7(4):2324–44. https://doi.org/10.3390/nu7042324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. •• Tsiftsoglou AS. Erythropoietin (EPO) as a key regulator of erythropoiesis, bone remodeling and endothelial transdifferentiation of multipotent mesenchymal stem cells (MSCs): implications in regenerative medicine. Cells. 2021;10(8):2140. https://doi.org/10.3390/cells10082140. (Work describing the seminal observation that erythropoietin drives not only erythropoiesis but also induces osteogenic and endothelial transdifferentiation of mesenchymal stem cell through the erythropoietin receptor signaling pathways, connecting osteogenesis to erythropoiesis)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kim AR, Ulirsch JC, Wilmes S, Unal E, Moraga I, Karakukcu M, et al. Functional selectivity in cytokine signaling revealed through a pathogenic EPO mutation. Cell. 2017;168(6):1053-64.e15. https://doi.org/10.1016/j.cell.2017.02.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Suresh S, Lee J, Noguchi CT. Erythropoietin signaling in osteoblasts is required for normal bone formation and for bone loss during erythropoietin-stimulated erythropoiesis. FASEB J. 2020;34(9):11685–97. https://doi.org/10.1096/fj.202000888R.

    Article  CAS  PubMed  Google Scholar 

  9. Yu VW, Scadden DT. Heterogeneity of the bone marrow niche. Curr Opin Hematol. 2016;23(4):331–8. https://doi.org/10.1097/MOH.0000000000000265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kim PG, Niroula A, Shkolnik V, McConkey M, Lin AE, Słabicki M, et al. Dnmt3a-mutated clonal hematopoiesis promotes osteoporosis. J Exp Med. 2021;218(12):e20211872. https://doi.org/10.1084/jem.20211872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Calvi LM, Link DC. The hematopoietic stem cell niche in homeostasis and disease. Blood. 2015;126(22):2443–51. https://doi.org/10.1182/blood-2015-07-533588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. •• Galán-Díez M, Kousteni S. A bone marrow niche-derived molecular switch between osteogenesis and hematopoiesis. Genes Dev. 2018;32(5–6):324–6. https://doi.org/10.1101/gad.314013.118. (This study describes the mechanism by which specialized bone marrow niche cells regulates the interrelationship between osteogenesis and hematopoiesis)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Aoki K, Kurashige M, Ichii M, Higaki K, Sugiyama T, Kaito T, et al. Identification of CXCL12-abundant reticular cells in human adult bone marrow. Br J Haematol. 2021;193(3):659–68. https://doi.org/10.1111/bjh.17396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Seike M, Omatsu Y, Watanabe H, Kondoh G, Nagasawa T. Stem cell niche-specific Ebf3 maintains the bone marrow cavity. Genes Dev. 2018;32(5–6):359–72. https://doi.org/10.1101/gad.311068.117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wong P, Fuller PJ, Gillespie MT, Milat F. Bone disease in thalassemia: a molecular and clinical overview. Endocr Rev. 2016;37(4):320–46. https://doi.org/10.1210/er.2015-1105.

    Article  CAS  PubMed  Google Scholar 

  16. • Taher AT, Musallam KM, Cappellini MD. β-thalassemias. N Engl J Med. 2021;384(8):727–43. https://doi.org/10.1056/NEJMra2021838. (This work provides a comprehensive review of the β-thalassemias)

    Article  PubMed  Google Scholar 

  17. Haidar R, Musallam KM, Taher AT. Bone disease and skeletal complications in patients with β thalassemia major. Bone. 2011;48(3):425–32. https://doi.org/10.1016/j.bone.2010.10.173.

    Article  PubMed  Google Scholar 

  18. Rund D, Rachmilewitz E. Beta-thalassemia. N Engl J Med. 2005;353(11):1135–46. https://doi.org/10.1056/NEJMra050436.

    Article  CAS  PubMed  Google Scholar 

  19. •• Castro-Mollo M, Gera S, Ruiz-Martinez M, Feola M, Gumerova A, Planoutene M, et al. The hepcidin regulator erythroferrone is a new member of the erythropoiesis-iron-bone circuitry. Elife. 2021;10:e68217. https://doi.org/10.7554/eLife.68217. (This study demonstrated a role for erythroferrone in preventing bone loss during expanded erythropoiesis in beta-thalassemia)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Morabito N, Gaudio A, Lasco A, Atteritano M, Pizzoleo MA, Cincotta M, et al. Osteoprotegerin and RANKL in the pathogenesis of thalassemia-induced osteoporosis: new pieces of the puzzle. J Bone Miner Res. 2004;19(5):722–7. https://doi.org/10.1359/JBMR.040113.

    Article  CAS  PubMed  Google Scholar 

  21. Zaidi M, Kim SM, Mathew M, Korkmaz F, Sultana F, Miyashita S, et al. Bone circuitry and interorgan skeletal crosstalk. Elife. 2023;12:e83142. https://doi.org/10.7554/eLife.83142.

    Article  PubMed  PubMed Central  Google Scholar 

  22. • Bunn HF. Pathogenesis and treatment of sickle cell disease. N Engl J Med. 1997;337(11):762–9. https://doi.org/10.1056/NEJM199709113371107. (A timeless and still relevant review of the clinical manifestations of sickle cell disease by a legend in the field)

    Article  CAS  PubMed  Google Scholar 

  23. Mohandas N, Gallagher PG. Red cell membrane: past, present, and future. Blood. 2008;112(10):3939–48. https://doi.org/10.1182/blood-2008-07-161166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vanderhave KL, Perkins CA, Scannell B, Brighton BK. Orthopaedic manifestations of sickle cell disease. J Am Acad Orthop Surg. 2018;26(3):94–101. https://doi.org/10.5435/JAAOS-D-16-00255.

    Article  PubMed  Google Scholar 

  25. DalleCarbonare L, Matte’ A, Valenti MT, Siciliano A, Mori A, Schweiger V, et al. Hypoxia-reperfusion affects osteogenic lineage and promotes sickle cell bone disease. Blood. 2015;126(20):2320–8. https://doi.org/10.1182/blood-2015-04-641969.

    Article  CAS  Google Scholar 

  26. Adesina OO, Neumayr LD. Osteonecrosis in sickle cell disease: an update on risk factors, diagnosis, and management. Hematology Am Soc Hematol Educ Program. 2019;2019(1):351–8. https://doi.org/10.1182/hematology.2019000038.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Almeida A, Roberts I. Bone involvement in sickle cell disease. Br J Haematol. 2005;129(4):482–90. https://doi.org/10.1111/j.1365-2141.2005.05476.x.

    Article  PubMed  Google Scholar 

  28. Sarrai M, Duroseau H, D’Augustine J, Moktan S, Bellevue R. Bone mass density in adults with sickle cell disease. Br J Haematol. 2007;136(4):666–72. https://doi.org/10.1111/j.1365-2141.2006.06487.x.

    Article  CAS  PubMed  Google Scholar 

  29. Eskiocak Ö, Yılmaz M, İlhan G. Metabolic bone diseases in sickle cell anemia patients and evaluation of associated factors. Am J Med Sci. 2022;363(6):490–4. https://doi.org/10.1016/j.amjms.2021.07.002.

    Article  PubMed  Google Scholar 

  30. Stark Z, Savarirayan R. Osteopetrosis. Orphanet J Rare Dis. 2009;4:5. https://doi.org/10.1186/1750-1172-4-5.

    Article  PubMed  PubMed Central  Google Scholar 

  31. • Wu CC, Econs MJ, DiMeglio LA, Insogna KL, Levine MA, Orchard PJ, et al. Diagnosis and management of osteopetrosis: consensus guidelines from the Osteopetrosis Working Group. J Clin Endocrinol Metab. 2017;102(9):3111–23. https://doi.org/10.1210/jc.2017-01127. (These are important diagnostic and treatment consensus guidelines for osteopetrosis)

    Article  PubMed  Google Scholar 

  32. Roodman GD. Advances in bone biology: the osteoclast. Endocr Rev. 1996;17(4):308–32. https://doi.org/10.1210/edrv-17-4-308.

    Article  CAS  PubMed  Google Scholar 

  33. Palagano E, Menale C, Sobacchi C, Villa A. Genetics of osteopetrosis. Curr Osteoporos Rep. 2018;16(1):13–25. https://doi.org/10.1007/s11914-018-0415-2.

    Article  PubMed  Google Scholar 

  34. Sobacchi C, Schulz A, Coxon FP, Villa A, Helfrich MH. Osteopetrosis: genetics, treatment and new insights into osteoclast function. Nat Rev Endocrinol. 2013;9(9):522–36. https://doi.org/10.1038/nrendo.2013.137.

    Article  CAS  PubMed  Google Scholar 

  35. Sobacchi C, Abinun M. Osteoclast-poor osteopetrosis. Bone. 2022;164:116541. https://doi.org/10.1016/j.bone.2022.116541.

    Article  CAS  PubMed  Google Scholar 

  36. Del Fattore A, Cappariello A, Teti A. Genetics, pathogenesis and complications of osteopetrosis. Bone. 2008;42(1):19–29. https://doi.org/10.1016/j.bone.2007.08.029.

    Article  CAS  PubMed  Google Scholar 

  37. • Ulirsch JC, Verboon JM, Kazerounian S, Guo MH, Yuan D, Ludwig LS, et al. The genetic landscape of Diamond-Blackfan anemia. Am J Hum Genet. 2018;103(6):930–47. https://doi.org/10.1016/j.ajhg.2018.10.027. (This is an expansive work identifying the genes mutated in Diamond Blackfan anemia)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Narla A, Ebert BL. Ribosomopathies: human disorders of ribosome dysfunction. Blood. 2010;115(16):3196–205. https://doi.org/10.1182/blood-2009-10-178129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhou X, Liao JM, Liao WJ, Lu H. Scission of the p53-MDM2 loop by ribosomal proteins. Genes Cancer. 2012;3(3–4):298–310. https://doi.org/10.1177/1947601912455200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dutt S, Narla A, Lin K, Mullally A, Abayasekara N, Megerdichian C, et al. Haploinsufficiency for ribosomal protein genes causes selective activation of p53 in human erythroid progenitor cells. Blood. 2011;117(9):2567–76. https://doi.org/10.1182/blood-2010-07-295238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yin Y, Stephen CW, Luciani MG, Fåhraeus R. p53 Stability and activity is regulated by Mdm2-mediated induction of alternative p53 translation products. Nat Cell Biol. 2002;4(6):462–7. https://doi.org/10.1038/ncb801.

    Article  CAS  PubMed  Google Scholar 

  42. Zhang Y, Lu H. Signaling to p53: ribosomal proteins find their way. Cancer Cell. 2009;16(5):369–77. https://doi.org/10.1016/j.ccr.2009.09.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Perdahl EB, Naprstek BL, Wallace WC, Lipton JM. Erythroid failure in Diamond-Blackfan anemia is characterized by apoptosis. Blood. 1994;83(3):645–50.

    Article  CAS  PubMed  Google Scholar 

  44. Sakamoto KM, Narla A. Perspective on Diamond-Blackfan anemia: lessons from a rare congenital bone marrow failure syndrome. Leukemia. 2018;32(2):249–51. https://doi.org/10.1038/leu.2017.314.

    Article  CAS  PubMed  Google Scholar 

  45. Vlachos A, Muir E. How I treat Diamond-Blackfan anemia. Blood. 2010;116(19):3715–23. https://doi.org/10.1182/blood-2010-02-251090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hom J, Karnavas T, Hartman E, Papoin J, Tang Y, Dulmovits BM, et al. Limb specific failure of proliferation and translation in the mesenchyme leads to skeletal defects in Diamond Blackfan anemia. bioRxiv. 2022;597(7875):256.

    Google Scholar 

  47. Danilova N, Gazda HT. Ribosomopathies: how a common root can cause a tree of pathologies. Dis Model Mech. 2015;8(9):1013–26. https://doi.org/10.1242/dmm.020529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gabut M, Bourdelais F, Durand S. Ribosome and translational control in stem cells. Cells. 2020;9(2):497. https://doi.org/10.3390/cells9020497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mills EW, Green R. Ribosomopathies: there’s strength in numbers. Science. 2017;358(6363):eaan2755. https://doi.org/10.1126/science.aan2755.

    Article  CAS  PubMed  Google Scholar 

  50. •• Ludwig LS, Gazda HT, Eng JC, Eichhorn SW, Thiru P, Ghazvinian R, et al. Altered translation of GATA1 in Diamond-Blackfan anemia. Nat Med. 2014;20(7):748–53. https://doi.org/10.1038/nm.3557. (This paper demonstrates faulty transcription regulation as a consequence of ribosomal protein haploinsufficency)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell. 1997;89(5):747–54. https://doi.org/10.1016/s0092-8674(00)80257-3.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the Saint Baldrick’s Foundation, Pediatric Cancer Foundation, Gambino Medical & Science Foundation, and Diamond Blackfan Anemia Foundation for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey M. Lipton.

Ethics declarations

Conflict of Interest

JML reports honoraria/travel support from Bristol Myers Squibb and Chiesi, USA, outside the submitted work. RW, CC, LCW and LB report no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Willimann, R., Chougar, C., Wolfe, L.C. et al. Defects in Bone and Bone Marrow in Inherited Anemias: the Chicken or the Egg. Curr Osteoporos Rep 21, 527–539 (2023). https://doi.org/10.1007/s11914-023-00809-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-023-00809-3

Keywords

Navigation