Log in

Limbic-Predominant Age-Related TDP-43 Encephalopathy: LATE-Breaking Updates in Clinicopathologic Features and Biomarkers

  • Dementia (K.S. Marder, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Limbic-predominant age-related TDP-43 encephalopathy (LATE) is a recently defined neurodegenerative disease characterized by amnestic phenotype and pathological inclusions of TAR DNA-binding protein 43 (TDP-43). LATE is distinct from rarer forms of TDP-43 diseases such as frontotemporal lobar degeneration with TDP-43 but is also a common copathology with Alzheimer’s disease (AD) and cerebrovascular disease and accelerates cognitive decline. LATE contributes to clinicopathologic heterogeneity in neurodegenerative diseases, so it is imperative to distinguish LATE from other etiologies.

Recent Findings

Novel biomarkers for LATE are being developed with magnetic resonance imaging (MRI) and positron emission tomography (PET). When cooccurring with AD, LATE exhibits identifiable patterns of limbic-predominant atrophy on MRI and hypometabolism on 18F-fluorodeoxyglucose PET that are greater than expected relative to levels of local AD pathology. Efforts are being made to develop TDP-43-specific radiotracers, molecularly specific biofluid measures, and genomic predictors of TDP-43. LATE is a highly prevalent neurodegenerative disease distinct from previously characterized cognitive disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Nelson PT, Dickson DW, Trojanowski JQ, et al. Limbic-predominant age-related TDP-43 encephalopathy (LATE): consensus working group report. Brain. 2019;142(6):1503–27 (Important paper from a consensus panel that establishes recommendations for diagnosing LATE.).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Besser LM, Teylan MA, Nelson PT. Limbic predominant age-related TDP-43 encephalopathy (LATE): clinical and neuropathological associations. J Neuropathol Exp Neurol. 2020;79(3):305–13.

    Article  CAS  PubMed  Google Scholar 

  3. Neumann M, Sampathu DM, Kwong LK, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science. 2006;314(5796):130–3 (One of the first studies to discover TDP-43 pathology in neurodegenerative diseases, including FTLD and ALS.).

    Article  CAS  PubMed  Google Scholar 

  4. Arai T, Hasegawa M, Akiyama H, et al. TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun. 2006;351(3):602–11 (One of the first studies to discover TDP-43 pathology in neurodegenerative diseases, including FTLD and ALS.).

    Article  CAS  PubMed  Google Scholar 

  5. Amador-Ortiz C, Lin W-L, Ahmed Z, et al. TDP-43 immunoreactivity in hippocampal sclerosis and Alzheimer’s disease. Ann Neurol. 2007;61(5):435–45 (First study to find TDP-43 inclusions in hippocampal sclerosis and AD.).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nelson PT, Brayne C, Flanagan ME, et al. Frequency of LATE neuropathologic change across the spectrum of Alzheimer’s disease neuropathology: combined data from 13 community-based or population-based autopsy cohorts. Acta Neuropathol. 2022;144(1):27–44 (Updated study determining prevalence of LATE in older adults.).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jack CR, Bennett DA, Blennow K, et al. NIA-AA Research Framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018;14:535–62.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Meneses A, Koga S, O’Leary J, Dickson DW, Bu G, Zhao N. TDP-43 Pathology in Alzheimer’s disease. Mol Neurodegen. 2021;16:84.

    Article  CAS  Google Scholar 

  9. Thomas DX, Bajaj S, McRae-McKee K, Hadjichrsanthou C, Anderson RM, Collinge J. Association of TDP-43 proteinopathy, cerebral amyloid angiopathy, and Lewy bodies with cognitive impairment in individuals with or without Alzheimer’s disease neuropathology. Sci Rep. 2020;10:14579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Robinson JL, Lee EB, **e SX, et al. Neurodegenerative disease concomitant proteinopathies are prevalent, age-related and APOE4-associated. Brain. 2018;141(7):2181–93.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Dickson DW, Davies P, Bevona C, et al. Hippocampal sclerosis: a common pathological feature of dementia in very old (> or =80 years of age) humans. Acta Neuropathol. 1994;88:212–21 (First pathological study to define hippocampal sclerosis, a common neuroanatomical feature in LATE.).

    Article  CAS  PubMed  Google Scholar 

  12. Mehta P, Kaye W, Raymond J, et al. Prevalence of amyotrophic lateral sclerosis — United States, 2015. MMWR Morb Mortal Wkly Rep. 2018;67:1285–9.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Onyike CU, Diehl-Schmid J. The epidemiology of frontotemporal dementia. Int Rev Psychiatry. 2013;25(2):130–7.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lopez OL, Kofler J, Chang YF, et al. Hippocampal sclerosis, TDP-43, and the duration of the symptoms of dementia of AD patients. Ann Clin Transl Neurol. 2020;7(9):1546–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Josephs KA, Dickson DW, Tosakulwong N, et al. Rates of hippocampal atrophy and presence of post-mortem TDP-43 in patients with Alzheimer’s disease: a longitudinal retrospective study. Lancet Neurol. 2017;16(11):917–24.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kapasi A, Yu L, Boyle PA, Barnes LL, Bennett DA, Schneider JA. Limbic-predominant age-related TDP-43 encephalopathy (LATE), ADNC pathology, and cognitive decline in aging. Neurology. 2020;95(14):e1951–62 (Recent study on the influence of LATE and AD pathologies on cognitive decline rates.).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gauthreaux KM, Teylan MA, Katsumata Y, et al. Limbic-predominant age-related TDP-43 encephalopathy: medical and pathologic factors associated with comorbid hippocampal sclerosis. Neurology. 2022;98(14):e1422–33 (Important study dissecting the differences in clinical and pathological factors affecting LATE with HS vs. LATE without HS.).

    Article  CAS  PubMed  Google Scholar 

  18. Wilson RS, Yu L, Trojanowski JQ, et al. TDP-43 pathology, cognitive decline, and dementia in old age. JAMA Neurol. 2013;70(11):1418–24.

    Article  PubMed  Google Scholar 

  19. Josephs KA, Murray ME, Whitwell JL, et al. Staging TDP-43 pathology in Alzheimer’s disease. Acta Neuropathol. 2014;127(3):441–50.

    Article  CAS  PubMed  Google Scholar 

  20. Nag S, Yu L, Boyle PA, Leurgans SE, Bennett DA, Schneider JA. TDP-43 pathology in anterior temporal pole cortex in aging and Alzheimer’s disease. Acta Neuropathol Commun. 2018;6:33.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Liu KY, Reeves S, McAleese KE, Attems J, Francis P, Thomas A, Howard R. Neuropsychiatric symptoms in limbic-predominant age-related TDP-43 encephalopathy and Alzheimer’s disease. Brain. 143(12):3842–3849. Important investigation on neurological and psychiatric symptoms in LATE and AD.

  22. Blass DM, Hatanpaa KJ, Rao V, Steinberg M, Troncoso JC, Rabins PV. Dementia in hippocampal sclerosis resembles frontotemporal dementia more than Alzheimer disease. Neurology. 2004;63(3):492–7.

    Article  CAS  PubMed  Google Scholar 

  23. Jo M, Lee S, Jeon YM, Kim S, Kwon Y, Kim HJ. The role of TDP-43 propagation in neurodegenerative diseases: integrating insights from clinical and experimental studies. Exp Mol Med. 2020;52(10):1652–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cohen TJ, Lee VM-Y, Trojanowski TJ. TDP-43 functions and pathogenic mechanisms implicated in TDP-43 proteinopathies. Trends Mol Med. 2011;17(11):659–667.

  25. Colombrita C, Zennaro E, Fallini C, et al. TDP-43 is recruited to stress granules in conditions of oxidative insult. J Neurochem. 2009;111(4):1051–61.

    Article  CAS  PubMed  Google Scholar 

  26. McGurk L, Gomes E, Guo L, et al. Poly(ADP-ribose) prevents pathological phase separation of TDP-43 by promoting liquid demixing and stress granule localization. Mol Cell. 2018;71(5):703–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Barmada SJ, Skibinski G, Korb E, Rao EJ, Wu JY, Finkbeiner S. Cytoplasmic mislocalization of TDP-43 is toxic to neurons and enhanced by a mutation associated with familial amyotrophic lateral sclerosis. J Neurosci. 2010;30(2):639–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Herzog JJ, Xu W, Deshpande M, et al. TDP-43 dysfunction restricts dendritic complexity by inhibiting CREB activation and altering gene expression. Proc Natl Acad Sci USA. 2020;117(21):11760–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Paolicelli RC, Jawaid A, Henstridge CM, et al. TDP-43 Depletion in microglia promotes amyloid clearance but also induces synapse loss. Neuron. 2017;95:293–308.

    Article  Google Scholar 

  30. James BD, Wilson RS, Boyle PA, Trojanowski JQ, Bennett DA, Schneider JA. TDP-43 stage, mixed pathologies, and clinical Alzheimer’s-type dementia. Brain. 2016;139(11):2983–93.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Porta S, Xu Y, Lehr T, et al. Distinct brain-derived TDP-43 strains from FTLD-TDP subtypes induce diverse morphological TDP-43 aggregates and spreading patterns in vitro and in vivo. Neuropathol Appl Neurobiol. 2021;47(7):1033–49.

    Article  CAS  PubMed  Google Scholar 

  32. Tan RH, Ke YD, Ittner LM, Halliday GM. ALS/FTLD: experimental models and reality. Acta Neuropathol. 2017;133(2):177–96.

    Article  CAS  PubMed  Google Scholar 

  33. de Boer EMJ, Orie VK, Williams T, et al. TDP-43 proteinopathies: a new wave of neurodegenerative diseases. J Neurol Neurosurg Psychiatry. 2021;92:86–95.

    Article  Google Scholar 

  34. Niccoli T, Partridge L, Isaacs AM. Ageing as a risk factor for ALS/FTD. Hum Mol Genet. 2017;26(R2):R105–13.

    Article  CAS  PubMed  Google Scholar 

  35. Robinson JL, Porta S, Garrett FG, et al. Limbic-predominant age-related TDP-43 encephalopathy differs from frontotemporal lobar degeneration. Brain. 2020;143(9):2844–57.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wider C, Dickson DW, Stoessl AJ, et al. Pallidonigral TDP-43 pathology in Perry syndrome. Parkinsonism Relat Disord. 2009;15(4):281–6.

    Article  PubMed  Google Scholar 

  37. Dickson DW, Baker M, Rademakers R. Common variant in GRN is a genetic risk factor for hippocampal sclerosis in the elderly. Neurodegenerative Dis. 2010;7:170–4 (One of the first inquiries into genetic risk for hippocampal sclerosis.).

    Article  CAS  Google Scholar 

  38. Mackenzie IRA, Rademakers R. The role of TDP-43 in amyotrophic lateral sclerosis and frontotemporal dementia. Curr Opin Neurol. 2008;21(6):693–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Strittmatter WJ, Saunders AM, Schmechel D, Pericak-Vance M, Enghild J, Salvesen GS, Roses AD. Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci USA. 1993;90(5):1977–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wolk DA, Dickerson BC. Alzheimer’s disease neuroimaging initiative. Apolipoprotein E (APOE) genotype has dissociable effects on memory and attentional-executive network function in Alzheimer’s disease. Proc Natl Acad Sci USA. 2010;107(22):10256–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Duong MT, Nasrallah IM, Wolk DA, Chang CCY, Chang T-Y. Cholesterol, atherosclerosis, and APOE in vascular contributions to cognitive impairment and dementia (VCID): potential mechanisms and therapy. Front Aging Neurosci. 2021;13: 647990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yang H-S, Yu L, Whie CC, et al. Evaluation of TDP-43 proteinopathy and hippocampal sclerosis in relation to APOE ε4 haplotype status: a community-based cohort study. Lancet Neurol. 2018;17(9):773–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yang H-S, White CC, Klein H-U, et al. Genetics of gene expression in the aging human brain reveal TDP-43 proteinopathy pathophysiology. Neuron. 2020;107:496–508 (Important study that identified several risk loci of TDP-43 proteinopathies.).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nelson PT, Estus S, Abner EL, et al. ABCC9 gene polymorphism is associated with hippocampal sclerosis of aging pathology. Acta Neuropathol. 2014;127(6):825–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dugan AJ, Nelson PT, Katsumata Y, et al. Analysis of genes (TMEM106B, GRN, ABCC9, KCNMB2, and APOE) implicated in risk for LATE-NC and hippocampal sclerosis provides pathogenetic insights: a retrospective genetic association study. Acta Neuropathol Comm. 2021;9:152.

    Article  CAS  Google Scholar 

  46. Brady OA, Zheng Y, Murphy K, Huang M, Hu F. The frontotemporal lobar degeneration risk factor, TMEM106B, regulates lysosomal morphology and function. Hum Mol Genet. 2013;22(4):685–95.

    Article  CAS  PubMed  Google Scholar 

  47. Gallagher MD, Posavi M, Huang P, et al. A dementia-associated risk variant near TMEM106B alters chromatin architecture and gene expression. Am J Hum Genet. 2017;101(5):643–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Van Deerlin VM, Sleiman PMA, Martinez-Lage M, et al. Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions. Nat Genet. 2010;42(3):234–9 (First study to map the genetic architecture of TDP-43 disorders.).

    Article  PubMed  PubMed Central  Google Scholar 

  49. van der Zee J, Van Langenhove T, Kleinberger G, et al. TMEM106B is associated with frontotemporal lobar degeneration in a clinically diagnosed patient cohort. Brain. 2011;134(Pt 3):808–15 (First study to map the genetic architecture of TDP-43 disorders.).

    PubMed  PubMed Central  Google Scholar 

  50. Yu L, De Jager PL, Yang J, Trojanowski JQ, Bennett DA, Schneider JA. The TMEM106B locus and TDP-43 pathology in older persons without FTLD. Neurology. 2015;84(9):927–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wightman DP, Jansen IE, Savage JE, et al. A genome-wide association study with 1,126,563 individuals identifies new risk loci for Alzheimer’s disease. Nat Genet. 2021;53:1276–82.

    Article  CAS  PubMed  Google Scholar 

  52. Li Z, Farias FHG, Dube U, et al. The TMEM106B FTLD-protective variant, rs1990621, is also associated with increased neuronal proportion. Acta Neuropathol. 2020;139(1):45–61.

    Article  CAS  PubMed  Google Scholar 

  53. Chang A, **ang X, Wang J, et al. Homotypic fibrillization of TMEM106B across diverse neurodegenerative diseases. Cell. 2022;185:1–10.

    Article  Google Scholar 

  54. Jiang YX, Cao Q, Sawaya MR, et al. Amyloid fibrils in disease FTLD-TDP are composed of TMEM106B not TDP-43. Nature. 2022;605:304–9.

    Article  CAS  PubMed  Google Scholar 

  55. Schweighauser M, Arseni D, Bacioglu M, et al. Age-dependent formation of TMEM106B amyloid filaments in human brains. Nature. 2022;605:310–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Robinson JL, Richardson H, **e SX, et al. The development and convergence of copathologies in Alzheimer’s disease. Brain. 2021;144(3):953–62.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Latimer CS, Burke BT, Liachko NF, et al. Resistance and resilience to Alzheimer’s disease pathology are associated with reduced cortical pTau and absence of limbic-predominant age-related TDP-43 encephalopathy in a community-based cohort. Acta Neuropathol Commun. 2019;7:91.

    Article  PubMed  Google Scholar 

  58. Shih Y-H, Tu L-H, Chang T-Y, et al. TDP-43 interacts with amyloid-β, inhibits fibrillization, and worsens pathology in a model of Alzheimer’s disease. Nat Commun. 2020;11:5950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Katsumata Y, Fardo DW, Kukull WA, Nelson PT. Dichotomous scoring of TDP-43 proteinopathy from specific brain regions in 27 academic research centers: associations with Alzheimer’s disease and cerebrovascular disease pathologies. Acta Neuropathol Comm. 2018;6:142.

    Article  CAS  Google Scholar 

  60. Raghavan S, Przybelski SA, Reid RI, et al. White matter damage due to vascular, tau, and TDP-43 pathologies and its relevance to cognition. Acta Neuropathol Comm. 2022;10:16.

    Article  CAS  Google Scholar 

  61. Agrawal S, Yu L, Kapasi A, et al. Limbic-predominant age-related TDP-43 encephalopathy neuropathologic change and microvascular pathologies in community-dwelling older persons. Brain Pathol. 2021;31(3): e12939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Uemura MT, Robinson JL, Cousins KAQ, et al. Distinct characteristics of limbic-predominant age-related TDP-43 encephalopathy in Lewy body disease. Acta Neuropathol. 2022;143(1):15–31 (Recent investigation elucidating the histopathological differences between LATE+LBD and LATE+AD.).

    Article  CAS  PubMed  Google Scholar 

  63. Agrawal S, Yu L, Nag S, et al. The association of Lewy bodies with limbic-predominant age-related TDP-43 encephalopathy neuropathologic changes and their role in cognition and Alzheimer’s dementia in older persons. Acta Neuropathol Commun. 2021;9:156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bayram E, Shan G, Cummings JL. Associations between comorbid TDP-43, Lewy body pathology, and neuropsychiatric symptoms in Alzheimer’s disease. J Alzheimers Dis. 2019;69(4):953–61.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Nakashima-Yasuda H, Uryu K, Robinson J, et al. Co-morbidity of TDP-43 proteinopathy in Lewy body related diseases. Acta Neuropathol. 2007;114(3):221–9.

    Article  CAS  PubMed  Google Scholar 

  66. Guo L, Shorter J. Biology and pathobiology of TDP-43 and emergent therapeutic strategies. Cold Spring Harb Perspect Med. 2017;7(9): a024554.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Makkinejad N, Schneider JA, Yu J, et al. Associations of amygdala volume and shape with transactive response DNA-binding protein 43 (TDP-43) pathology in a community cohort of older adults. Neurobiol Aging. 2019;77:104–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ravikumar S, Wisse LEM, Lim S, et al. Ex vivo MRI atlas of the human medial temporal lobe: characterizing neurodegeneration due to tau pathology. Acta Neuropathol Comm. 2021;9:173 (Recent investigation comparing the effects of TDP-43 and tau pathology on MTL thickness on postmortem imaging.).

    Article  CAS  Google Scholar 

  69. Wisse LEM, Ravikumar S, Ittyerah R, et al. Downstream effects of polypathology on neurodegeneration of medial temporal lobe subregions. Acta Neuropathol Comm. 2021;9:128 (Recent work to evaluate the contributions of TDP-43, amyloid, tau, and α-synuclein pathology on MTL thickness with ex vivo MRI.).

    Article  CAS  Google Scholar 

  70. de Flores R, Wisse LEM, Das SR, et al. Contribution of mixed pathology to medial temporal lobe atrophy in Alzheimer’s disease. Alzheimers Dement. 2020;16(6):843–52 (Important investigation on the effects of TDP-43 and tau pathology on MTL thickness. TDP-43 burden was associated with anterior MTL atrophy.).

    Article  PubMed  PubMed Central  Google Scholar 

  71. de Flores R, Das SR, **e L, et al. Medial temporal lobe networks in Alzheimer’s disease: structural and molecular vulnerabilities. J Neurosci. 2022;42(10):2131–41.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Buciuc M, Martin PR, Tosakulwong N, et al. TDP-43-associated atrophy in brains with and without frontotemporal lobar degeneration. Neuroimage Clin. 2022;34: 102954.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Botha H, Mantyh WG, Murray ME, et al. FDG-PET in tau-negative amnestic dementia resembles that of autopsy-proven hippocampal sclerosis. Brain. 2018;141(4):1201–17 (First study to show a distinct 18F-FDG PET pattern for pathologically defined LATE.).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Buciuc M, Botha H, Murray ME, et al. Utility of FDG-PET in diagnosis of Alzheimer-related TDP-43 proteinopathy. Neurology. 2020;85:e23–34 (Important study that improves an 18F-FDG PET pattern for LATE and compares this biomarker to structural MRI.).

    Article  Google Scholar 

  75. Tanzey S, Brooks A, Shao X, Scott P. Extraction of enriched phosphorylated TDP43 from ALS tissue for evaluation of new TDP-43 radiotracers. J Nucl Med. 2020;61(S1):1038.

    Google Scholar 

  76. Arseni D, Hasegawa M, Murzin AG, Kametani F, Arai M, Yoshida M, Ryskeldi-Falcon B. Structure of pathological TDP-43 filaments from ALS with FTLD. Nature. 2022;601(7891):139–43.

    Article  CAS  PubMed  Google Scholar 

  77. Tiepolt S, Patt M, Aghakhanyan G, et al. Current radiotracers to image neurodegenerative diseases. EJNMMI Radiopharm Chem. 2019;4:17.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Gómez-Isla T, Hollister R, West H, et al. Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease. Ann Neurol. 1997;41(1):17–24.

    Article  PubMed  Google Scholar 

  79. Gómez-Isla T, Frosch MP. Lesions without symptoms: understanding resilience to Alzheimer disease neuropathological changes. Nat Rev Neurol 2022;18(6):323–332

  80. Das SR, Lyu X, Duong MT, et al. Tau-atrophy variability reveals phenotypic heterogeneity in Alzheimer’s disease. Ann Neurol. 2021;90:751–62 (First imaging study to explicitly model the mismatch between tau pathology and neurodegeneration on MRI).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Duong MT, Das SR, Lyu X, et al. Dissociation of tau pathology and neuronal hypometabolism within the ATN framework of Alzheimer’s disease. Nat Commun. 2022;13(1):1495 (First PET study to infer non-AD copathologies such as TDP-43 and α-synuclein imaging patterns based on hypometabolism relative to AD tau accumulation.).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Goossens J, Vanmechelen E, Trojanowski JQ, et al. TDP-43 as a possible biomarker for frontotemporal lobar degeneration: a systematic review of existing antibodies. Acta Neuropathol Comm. 2015;3:15.

    Article  Google Scholar 

  83. Foulds P, McAuley E, Gibbons L, et al. TDP-43 protein in plasma may index TDP-43 brain pathology in Alzheimer’s disease and frontotemporal lobar degeneration. Acta Neuropathol. 2008;116:141–6 (One of the first papers to detect plasma TDP-43 protein in patients with FTLD and AD. The patients with AD and TDP-43 biomarkers may in fact have mixed LATE with AD.).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Steinacker P, Hendrich C, Sperfeld AD, et al. TDP-43 in cerebrospinal fluid of patients with frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Arch Neurol. 2008;65(11):1481–7 (One of the first studies to detect elevated TDP-43 protein in the CSF of patients with TDP-43 pathology.).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Ren Y, Li S, Chen S, et al. TDP-43 and phosphorylated TDP-43 levels in paired plasma and CSF samples in amyotrophic lateral sclerosis. Front Neurol. 2021;12: 663637.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Beyers L, Günther R, Koch JC, et al. TDP-43 as structure-based biomarker in amyotrophic lateral sclerosis. Ann Clin Transl Neurol. 2021;8(1):271–7.

    Article  Google Scholar 

  87. Majumder V, Gregory JM, Barria MA, Green A, Pal S. TDP-43 as a potential biomarker for amyotrophic lateral sclerosis: a systematic review and meta-analysis. BMC Neurol. 2018;18:90.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Kasai T, Tokuda T, Ishigami N, et al. Increased TDP-43 protein in cerebrospinal fluid of patients with amyotrophic lateral sclerosis. Acta Neuropathol. 2009;117(1):55–62.

    Article  CAS  PubMed  Google Scholar 

  89. Zhang N, Gu D, Meng M, Gordon ML. TDP-43 is elevated in plasma neuronal-derived exosomes of patients with Alzheimer’s disease. Front Aging Neurosci. 2020;12:166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sun L, Li W, Yue L, **ao S. Blood TDP-43 combined with demographics information predicts dementia occurrence in community non-dementia elderly. J Alzheimers Dis. 2021;79(1):301–9.

    Article  CAS  PubMed  Google Scholar 

  91. González AC, Irwin DJ, Alcolea D, et al. Multimarker synaptic protein cerebrospinal fluid panels reflect TDP-43 pathology and cognitive performance in a pathological cohort of frontotemporal lobar degeneration. Mol Neurodegen. 2022;17:29 (Essential study identifying CSF markers of TDP-43 pathology in FTLD-TDP compared to FTLD-Tau and AD.).

    Article  Google Scholar 

  92. Mann JR, Gleixner AM, Mauna JC, et al. RNA binding antagonizes neurotoxic phase transitions of TDP-43. Neuron. 2019;102:321–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Benarroch E. What is the role of stathmin-2 in axonal biology and degeneration? Neurology. 2021;97:330–3.

    Article  PubMed  Google Scholar 

  94. Klim JR, Williams LA, Limone F, et al. ALS-implicated protein TDP-43 sustains levels of STMN2, a mediator of motor neuron growth and repair. Nat Neurosci. 2019;22:167–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Melamed Z, López-Erauskin J, Baughn MW, et al. Premature polyadenylation-mediated loss of stathmin-2 is a hallmark of TDP-43-dependent neurodegeneration. Nat Neurosci. 2019;22:180–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Prudencio M, Humphrey J, Pickles S, et al. Truncated stathmin-2 is a marker of TDP-43 pathology in frontotemporal dementia. J Clin Invest. 2020;130(11): e139741.

    Article  Google Scholar 

  97. Ighodaro ET, Jicha GA, Schmitt FA, et al. Hippocampal sclerosis of aging can be segmental: two cases and review of the literature. J Neuropathol Exp Neurol. 2015;74(7):642–52.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank our lab members for helpful discussions and for study investigators, staff, participants, and families for their support.

Funding

Funding was provided by the Ruth L. Kirschstein National Research Service Award (NIA F30 AG074524, Michael Tran Duong) and the University of Pennsylvania Alzheimer’s Disease Core Center grant (NIA P30 AG072979, David A. Wolk).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Wolk.

Ethics declarations

Conflict of Interest

David A. Wolk reports grants from Merck, Biogen, Eli Lilly/Avid and additional fees from GE Healthcare, Functional Neuromodulation and Neuronix, all outside of this work. Michael Tran Duong has no conflicts of interest to report.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Dementia

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duong, M.T., Wolk, D.A. Limbic-Predominant Age-Related TDP-43 Encephalopathy: LATE-Breaking Updates in Clinicopathologic Features and Biomarkers. Curr Neurol Neurosci Rep 22, 689–698 (2022). https://doi.org/10.1007/s11910-022-01232-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-022-01232-4

Keywords

Navigation