Log in

Clonal Hematopoiesis in Myeloproliferative Neoplasms Confers a Predisposition to both Thrombosis and Cancer

  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review focuses on vascular complications associated with chronic myeloproliferative neoplasms (MPN) and more specifically aims to discuss the clinical and biological evidence supporting the existence of a link between clonal hematopoiesis, cardiovascular events (CVE), and solid cancer (SC).

Recent Findings

The MPN natural history is driven by uncontrolled clonal myeloproliferation sustained by acquired somatic mutations in driver (JAK2, CALR, and MPL) and non-driver genes, involving epigenetic (e.g., TET2, DNMT3A) regulators, chromatin regulator genes (e.g., ASXL1, EZH2), and splicing machinery genes (e.g., SF3B1). The genomic alterations and additional thrombosis acquired risk factors are determinants for CVE. There is evidence that clonal hematopoiesis can elicit a chronic and systemic inflammation status that acts as driving force for the development of thrombosis, MPN evolution, and second cancer (SC). This notion may explain the mechanism that links arterial thrombosis in MPN patients and subsequent solid tumors. In the last decade, clonal hematopoiesis of indeterminate potential (CHIP) has been detected in the general population particularly in the elderly and initially found in myocardial infarction and stroke, rising the hypothesis that the inflammatory status CHIP-associated could confer predisposition to both cardiovascular diseases and cancer.

Summary

In summary, clonal hematopoiesis in MPN and CHIP confer a predisposition to cardiovascular events and cancer through chronic and systemic inflammation. This acquisition could open new avenues for antithrombotic therapy both in MPNs and in general population by targeting both clonal hematopoiesis and inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Nangalia J, Massie CE, Baxter EJ, Nice FL, Gundem G, Wedge DC, et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med. 2013;369(25):2391–405. https://doi.org/10.1056/NEJMoa1312542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lundberg P, Karow A, Nienhold R, Looser R, Hao-Shen H, Nissen I, et al. Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms. Blood. 2014;123(14):2220–8. https://doi.org/10.1182/blood-2013-11-537167.

    Article  CAS  PubMed  Google Scholar 

  3. Grinfeld J, Nangalia J, Baxter EJ, Wedge DC, Angelopoulos N, Cantrill R, et al. Classification and personalized prognosis in myeloproliferative neoplasms. N Engl J Med. 2018;379(15):1416–30. https://doi.org/10.1056/NEJMoa1716614. Comprehensive genomic characterization for personalized prediction of patients' outcomes and treatment of patients with myeloproliferative neoplasms.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Barbui T, Carobbio A, De Stefano V. Thrombosis in myeloproliferative neoplasms during cytoreductive and antithrombotic drug treatment. Res Pract Thromb Haemost. 2022;6(1):e12657. https://doi.org/10.1002/rth2.12657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hasselbalch HC, Elvers M, Schafer AI. The pathobiology of thrombosis, microvascular disease, and hemorrhage in the myeloproliferative neoplasms. Blood. 2021;137(16):2152–60. https://doi.org/10.1182/blood.2020008109. The inflammatory state created by MPN stem cells amplifies the clinical thrombotic tendency and promote clonal expansion.

    Article  CAS  PubMed  Google Scholar 

  6. Tefferi A, Pardanani A. Essential thrombocythemia. N Engl J Med. 2019;381(22):2135–44. https://doi.org/10.1056/NEJMcp1816082.

    Article  PubMed  Google Scholar 

  7. Hultcrantz M, Bjorkholm M, Dickman PW, Landgren O, Derolf AR, Kristinsson SY, et al. Risk for arterial and venous thrombosis in patients with myeloproliferative neoplasms: a population-based cohort study. Ann Intern Med. 2018;168(5):317–25. https://doi.org/10.7326/M17-0028. Patients with MPNs across all age groups have a significantly increased rate of arterial and venous thrombosis compared with matched control.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Landolfi R, Marchioli R, Kutti J, Gisslinger H, Tognoni G, Patrono C, et al. Efficacy and safety of low-dose aspirin in polycythemia vera. N Engl J Med. 2004;350(2):114–24. https://doi.org/10.1056/NEJMoa035572.

    Article  CAS  PubMed  Google Scholar 

  9. Barbui T, Carobbio A, Rumi E, Finazzi G, Gisslinger H, Rodeghiero F, et al. In contemporary patients with polycythemia vera, rates of thrombosis and risk factors delineate a new clinical epidemiology. Blood. 2014;124(19):3021–3. https://doi.org/10.1182/blood-2014-07-591610.

    Article  CAS  PubMed  Google Scholar 

  10. Marchioli R, Finazzi G, Landolfi R, Kutti J, Gisslinger H, Patrono C, et al. Vascular and neoplastic risk in a large cohort of patients with polycythemia vera. J Clin Oncol. 2005;23(10):2224–32. https://doi.org/10.1200/JCO.2005.07.062.

    Article  PubMed  Google Scholar 

  11. Marchioli R, Finazzi G, Specchia G, Cacciola R, Cavazzina R, Cilloni D, et al. Cardiovascular events and intensity of treatment in polycythemia vera. N Engl J Med. 2013;368(1):22–33. https://doi.org/10.1056/NEJMoa1208500.

    Article  CAS  PubMed  Google Scholar 

  12. Tefferi A, Rumi E, Finazzi G, Gisslinger H, Vannucchi AM, Rodeghiero F, et al. Survival and prognosis among 1545 patients with contemporary polycythemia vera: an international study. Leukemia. 2013;27(9):1874–81. https://doi.org/10.1038/leu.2013.163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Carobbio A, Thiele J, Passamonti F, Rumi E, Ruggeri M, Rodeghiero F, et al. Risk factors for arterial and venous thrombosis in WHO-defined essential thrombocythemia: an international study of 891 patients. Blood. 2011;117(22):5857–9. https://doi.org/10.1182/blood-2011-02-339002.

    Article  CAS  PubMed  Google Scholar 

  14. Barbui T, Finazzi G, Carobbio A, Thiele J, Passamonti F, Rumi E, et al. Development and validation of an International Prognostic Score of thrombosis in World Health Organization-essential thrombocythemia (IPSET-thrombosis). Blood. 2012;120(26):5128–33. https://doi.org/10.1182/blood-2012-07-444067. (quiz 252).

    Article  CAS  PubMed  Google Scholar 

  15. Barbui T, Vannucchi AM, Buxhofer-Ausch V, De Stefano V, Betti S, Rambaldi A, et al. Practice-relevant revision of IPSET-thrombosis based on 1019 patients with WHO-defined essential thrombocythemia. Blood Cancer J. 2015;5(11):e369. https://doi.org/10.1038/bcj.2015.94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Barbui T, Thiele J, Gisslinger H, Kvasnicka HM, Vannucchi AM, Guglielmelli P, et al. The 2016 WHO classification and diagnostic criteria for myeloproliferative neoplasms: document summary and in-depth discussion. Blood Cancer J. 2018;8(2):15. https://doi.org/10.1038/s41408-018-0054-y.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Arber DA, Orazi A, Hasserjian RP, Borowitz MJ, Calvo KR, Kvasnicka HM, et al. International consensus classification of myeloid neoplasms and acute leukemias: integrating morphologic, clinical, and genomic data. Blood. 2022;140(11):1200–28. https://doi.org/10.1182/blood.2022015850.

    Article  CAS  PubMed  Google Scholar 

  18. Barbui T, Thiele J, Passamonti F, Rumi E, Boveri E, Ruggeri M, et al. Survival and disease progression in essential thrombocythemia are significantly influenced by accurate morphologic diagnosis: an international study. J Clin Oncol. 2011;29(23):3179–84. https://doi.org/10.1200/JCO.2010.34.5298.

    Article  PubMed  Google Scholar 

  19. Finazzi G, Carobbio A, Guglielmelli P, Cavalloni C, Salmoiraghi S, Vannucchi AM, et al. Calreticulin mutation does not modify the IPSET score for predicting the risk of thrombosis among 1150 patients with essential thrombocythemia. Blood. 2014;124(16):2611–2. https://doi.org/10.1182/blood-2014-08-596676.

    Article  CAS  PubMed  Google Scholar 

  20. Guglielmelli P, Carobbio A, Rumi E, De Stefano V, Mannelli L, Mannelli F, et al. Validation of the IPSET score for thrombosis in patients with prefibrotic myelofibrosis. Blood Cancer J. 2020;10(2):21. https://doi.org/10.1038/s41408-020-0289-2.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Barbui T, Carobbio A, Cervantes F, Vannucchi AM, Guglielmelli P, Antonioli E, et al. Thrombosis in primary myelofibrosis: incidence and risk factors. Blood. 2010;115(4):778–82. https://doi.org/10.1182/blood-2009-08-238956.

    Article  CAS  PubMed  Google Scholar 

  22. Saliba W, Mishchenko E, Cohen S, Rennert G, Preis M. Association between myelofibrosis and thromboembolism: a population-based retrospective cohort study. J Thromb Haemost. 2020;18(4):916–25. https://doi.org/10.1111/jth.14754.

    Article  CAS  PubMed  Google Scholar 

  23. Mora B, Guglielmelli P, Kuykendall A, Rumi E, Maffioli M, Palandri F, et al. Prediction of thrombosis in post-polycythemia vera and post-essential thrombocythemia myelofibrosis: a study on 1258 patients. Leukemia. 2022;36(10):2453–60. https://doi.org/10.1038/s41375-022-01673-3.

    Article  CAS  PubMed  Google Scholar 

  24. Barbui T, Ghirardi A, Carobbio A, Masciulli A, Carioli G, Rambaldi A, et al. Increased risk of thrombosis in JAK2 V617F-positive patients with primary myelofibrosis and interaction of the mutation with the IPSS score. Blood Cancer J. 2022;12(11):156. https://doi.org/10.1038/s41408-022-00743-0.

    Article  PubMed  PubMed Central  Google Scholar 

  25. De Stefano V, Rossi E, Carobbio A, Ghirardi A, Betti S, Finazzi G, et al. Hydroxyurea prevents arterial and late venous thrombotic recurrences in patients with myeloproliferative neoplasms but fails in the splanchnic venous district. Pooled analysis of 1500 cases. Blood Cancer J. 2018;8(11):112. https://doi.org/10.1038/s41408-018-0151-y.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Barbui T, Barosi G, Birgegard G, Cervantes F, Finazzi G, Griesshammer M, et al. Philadelphia-negative classical myeloproliferative neoplasms: critical concepts and management recommendations from European LeukemiaNet. J Clin Oncol. 2011;29(6):761–70. https://doi.org/10.1200/JCO.2010.31.8436.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Barbui T, Tefferi A, Vannucchi AM, Passamonti F, Silver RT, Hoffman R, et al. Philadelphia chromosome-negative classical myeloproliferative neoplasms: revised management recommendations from European LeukemiaNet. Leukemia. 2018;32(5):1057–69. https://doi.org/10.1038/s41375-018-0077-1. In these guidelines, recommendations on the management of Philadelphia chromosome-negative myeloproliferative neoplasms (Ph-neg MPNs) by the European LeukemiaNet (ELN) consortium are presented.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gerds AT, Gotlib J, Ali H, Bose P, Dunbar A, Elshoury A, et al. Myeloproliferative Neoplasms, Version 3.2022, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2022;20(9):1033–62. https://doi.org/10.6004/jnccn.2022.0046. Updated recommendations for the diagnostic workup, risk stratification, treatment, and supportive care strategies for the management of myelofibrosis, polycythemia vera, and essential thrombocythemia.

    Article  CAS  PubMed  Google Scholar 

  29. Gisslinger H, Klade C, Georgiev P, Krochmalczyk D, Gercheva-Kyuchukova L, Egyed M, et al. Ropeginterferon alfa-2b versus standard therapy for polycythaemia vera (PROUD-PV and CONTINUATION-PV): a randomised, non-inferiority, phase 3 trial and its extension study. Lancet Haematol. 2020;7(3):e196–208. https://doi.org/10.1016/S2352-3026(19)30236-4. Ropeginterferon alfa-2b offers a valuable and safe long-term treatment option with features distinct from hydroxyurea.

    Article  PubMed  Google Scholar 

  30. Mascarenhas J, Kosiorek HE, Prchal JT, Rambaldi A, Berenzon D, Yacoub A, et al. A randomized phase 3 trial of interferon-alpha vs hydroxyurea in polycythemia vera and essential thrombocythemia. Blood. 2022;139(19):2931–41. https://doi.org/10.1182/blood.2021012743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ianotto JC, Chauveau A, Boyer-Perrard F, Gyan E, Laribi K, Cony-Makhoul P, et al. Benefits and pitfalls of pegylated interferon-alpha2a therapy in patients with myeloproliferative neoplasm-associated myelofibrosis: a French Intergroup of Myeloproliferative neoplasms (FIM) study. Haematologica. 2018;103(3):438–46. https://doi.org/10.3324/haematol.2017.181297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Silver RT, Kiladjian JJ, Hasselbalch HC. Interferon and the treatment of polycythemia vera, essential thrombocythemia and myelofibrosis. Expert Rev Hematol. 2013;6(1):49–58. https://doi.org/10.1586/ehm.12.69.

    Article  CAS  PubMed  Google Scholar 

  33. Yacoub A, Mascarenhas J, Kosiorek H, Prchal JT, Berenzon D, Baer MR, et al. Pegylated interferon alfa-2a for polycythemia vera or essential thrombocythemia resistant or intolerant to hydroxyurea. Blood. 2019;134(18):1498–509. https://doi.org/10.1182/blood.2019000428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Marchetti M, Vannucchi AM, Griesshammer M, Harrison C, Koschmieder S, Gisslinger H, et al. Appropriate management of polycythaemia vera with cytoreductive drug therapy: European LeukemiaNet 2021 recommendations. Lancet Haematol. 2022;9(4):e301–11. https://doi.org/10.1016/S2352-3026(22)00046-1. An expert panel presents evidence-based recommendation for cytoreductive treatment of low-risk patients with polycythemia vera.

    Article  CAS  PubMed  Google Scholar 

  35. Harrison C, Nangalia J, Boucher RH, Jackson A, Yap C, O’Sullivan J, et al. Ruxolitinib versus best available therapy for PV intolerant or resistant to hydroxycarbamide in a randomized trial. Blood. 2022;140(Supplement 1):1781–3. https://doi.org/10.1182/blood-2022-157273.

    Article  Google Scholar 

  36. Barbui T, Vannucchi AM, De Stefano V, Masciulli A, Carobbio A, Ferrari A, et al. Ropeginterferon alfa-2b versus phlebotomy in low-risk patients with polycythaemia vera (Low-PV study): a multicentre, randomised phase 2 trial. Lancet Haematol. 2021;8(3):e175–84. https://doi.org/10.1016/S2352-3026(20)30373-2. Ropeginterferon alfa-2b is safe and effective in steadily maintaining haematocrit values on target in low-risk patients with polycythaemia vera.

    Article  CAS  PubMed  Google Scholar 

  37. Navi BB, Reiner AS, Kamel H, Iadecola C, Okin PM, Tagawa ST, et al. Arterial thromboembolic events preceding the diagnosis of cancer in older persons. Blood. 2019;133(8):781–9. https://doi.org/10.1182/blood-2018-06-860874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. De Stefano V, Ghirardi A, Masciulli A, Carobbio A, Palandri F, Vianelli N, et al. Arterial thrombosis in Philadelphia-negative myeloproliferative neoplasms predicts second cancer: a case-control study. Blood. 2020;135(5):381–6. https://doi.org/10.1182/blood.2019002614. Patients experiencing arterial events after MPN diagnosis deserve careful clinical surveillance for early detection of carcinoma.

    Article  PubMed  Google Scholar 

  39. Arcasoy MO. Arterial thrombosis and second cancer in MPNs. Blood. 2020;135(5):301–2. https://doi.org/10.1182/blood.2019004627.

    Article  CAS  PubMed  Google Scholar 

  40. Marchetti M, Ghirardi A, Masciulli A, Carobbio A, Palandri F, Vianelli N, et al. Second cancers in MPN: Survival analysis from an international study. Am J Hematol. 2020;95(3):295–301. https://doi.org/10.1002/ajh.25700. Secondary cancer is a relevant cause of death competing with MPN evolution.

    Article  CAS  PubMed  Google Scholar 

  41. Mahajan A, Brunson A, Adesina O, Keegan THM, Wun T. The incidence of cancer-associated thrombosis is increasing over time. Blood Adv. 2022;6(1):307–20. https://doi.org/10.1182/bloodadvances.2021005590.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Langley RE, Burdett S, Tierney JF, Cafferty F, Parmar MK, Venning G. Aspirin and cancer: has aspirin been overlooked as an adjuvant therapy? Br J Cancer. 2011;105(8):1107–13. https://doi.org/10.1038/bjc.2011.289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371(26):2488–98. https://doi.org/10.1056/NEJMoa1408617. Age-related clonal hematopoiesis is a common condition that is associated with increases in the risk of hematologic cancer and in all-cause mortality.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Genovese G, Kahler AK, Handsaker RE, Lindberg J, Rose SA, Bakhoum SF, et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med. 2014;371(26):2477–87. https://doi.org/10.1056/NEJMoa1409405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Marnell CS, Bick A, Natarajan P. Clonal hematopoiesis of indeterminate potential (CHIP): linking somatic mutations, hematopoiesis, chronic inflammation and cardiovascular disease. J Mol Cell Cardiol. 2021;161:98–105. https://doi.org/10.1016/j.yjmcc.2021.07.004. This review summarizes emerging research on CHIP, the mechanisms in propagating inflammation and accelerating cardiovascular disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jaiswal S, Natarajan P, Silver AJ, Gibson CJ, Bick AG, Shvartz E, et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N Engl J Med. 2017;377(2):111–21. https://doi.org/10.1056/NEJMoa1701719.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Barbui T, Carobbio A, Finazzi G, Vannucchi AM, Barosi G, Antonioli E, et al. Inflammation and thrombosis in essential thrombocythemia and polycythemia vera: different role of C-reactive protein and pentraxin 3. Haematologica. 2011;96(2):315–8. https://doi.org/10.3324/haematol.2010.031070. Blood levels of high sensitivity C-reactive protein and petraxin 3 independently and in opposite ways modulate the intrinsic risk of cardiovascular events in patients with myeloproliferative disorders.

    Article  CAS  PubMed  Google Scholar 

  48. Barbui T, Carobbio A, Ferrari A. Leukocytosis and thrombosis in polycythemia vera: can clinical trials settle the debate? Blood Adv. 2019;3(23):3951–2. https://doi.org/10.1182/bloodadvances.2019001159.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Carobbio A, Ferrari A, Masciulli A, Ghirardi A, Barosi G, Barbui T. Leukocytosis and thrombosis in essential thrombocythemia and polycythemia vera: a systematic review and meta-analysis. Blood Adv. 2019;3(11):1729–37. https://doi.org/10.1182/bloodadvances.2019000211.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Hasselbalch HC, Bjorn ME. MPNs as inflammatory diseases: the evidence, consequences, and perspectives. Mediators Inflamm. 2015;2015:102476. https://doi.org/10.1155/2015/102476. Early intervention with interferon-alpha2 in combination with anti-inflammatory agents such as JAK-inhibitors is foreseen as the most promising new treatment modality in the years to come.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shahneh F, Grill A, Klein M, Frauhammer F, Bopp T, Schafer K, et al. Specialized regulatory T cells control venous blood clot resolution through SPARC. Blood. 2021;137(11):1517–26. https://doi.org/10.1182/blood.2020005407.

    Article  CAS  PubMed  Google Scholar 

  52. Carobbio A, Vannucchi AM, De Stefano V, Masciulli A, Guglielmelli P, Loscocco GG, et al. Neutrophil-to-lymphocyte ratio is a novel predictor of venous thrombosis in polycythemia vera. Blood Cancer J. 2022;12(2):28. https://doi.org/10.1038/s41408-022-00625-5.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Farrukh F, Guglielmelli P, Loscocco GG, Pardanani A, Hanson CA, De Stefano V, et al. Deciphering the individual contribution of absolute neutrophil and monocyte counts to thrombosis risk in polycythemia vera and essential thrombocythemia. Am J Hematol. 2022;97(2):E35–7. https://doi.org/10.1002/ajh.26423.

    Article  CAS  PubMed  Google Scholar 

  54. Coombs CC, Zehir A, Devlin SM, Kishtagari A, Syed A, Jonsson P, et al. Therapy-related clonal hematopoiesis in patients with non-hematologic cancers is common and associated with adverse clinical outcomes. Cell Stem Cell. 2017;21(3):374-82 e4. https://doi.org/10.1016/j.stem.2017.07.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bertero E, Robusto F, Rulli E, D’Ettorre A, Bisceglia L, Staszewsky L, et al. Cancer incidence and mortality according to pre-existing heart failure in a community-based cohort. JACC Cardio Oncol. 2022;4(1):98–109. https://doi.org/10.1016/j.jaccao.2021.11.007. Heart failure is associated with an increased risk of cancer and cancer-related mortality.

    Article  Google Scholar 

  56. Brahmbhatt DH, Scolari FL, Billia F. Could clonal hematopoiesis explain the link between increased cancer mortality incidence in heart failure? JACC Cardio Oncol. 2022;4(2):283. https://doi.org/10.1016/j.jaccao.2022.02.008.

    Article  Google Scholar 

  57. Hasselbalch HC, Riley CH. Statins in the treatment of polycythaemia vera and allied disorders: an antithrombotic and cytoreductive potential? Leuk Res. 2006;30(10):1217–25. https://doi.org/10.1016/j.leukres.2005.12.018.

    Article  CAS  PubMed  Google Scholar 

  58. Sorensen AL, Hasselbalch HC, Nielsen CH, Poulsen HE, Ellervik C. Statin treatment, oxidative stress and inflammation in a Danish population. Redox Biol. 2019;21:101088. https://doi.org/10.1016/j.redox.2018.101088.

    Article  CAS  PubMed  Google Scholar 

  59. Nidorf SM, Fiolet ATL, Mosterd A, Eikelboom JW, Schut A, Opstal TSJ, et al. Colchicine in patients with chronic coronary disease. N Engl J Med. 2020;383(19):1838–47. https://doi.org/10.1056/NEJMoa2021372.

    Article  CAS  PubMed  Google Scholar 

  60. Ullah W, Haq S, Zahid S, Gowda SN, Ottman P, Saleem S, et al. Safety and efficacy of colchicine in patients with stable CAD and ACS: a systematic review and meta-analysis. Am J Cardiovasc Drugs. 2021;21(6):659–68. https://doi.org/10.1007/s40256-021-00485-7.

    Article  PubMed  Google Scholar 

  61. Ridker PM, Libby P, MacFadyen JG, Thuren T, Ballantyne C, Fonseca F, et al. Modulation of the interleukin-6 signalling pathway and incidence rates of atherosclerotic events and all-cause mortality: analyses from the Canakinumab Anti-Inflammatory Thrombosis Outcomes Study (CANTOS). Eur Heart J. 2018;39(38):3499–507. https://doi.org/10.1093/eurheartj/ehy310.

    Article  CAS  PubMed  Google Scholar 

  62. Pedersen KM, Colak Y, Hasselbalch HC, Bojesen SE, Nordestgaard BG. Tocilizumab and soluble interleukin-6 receptor in JAK2V617F somatic mutation and myeloproliferative neoplasm. EClinicalMedicine. 2020;22:100337. https://doi.org/10.1016/j.eclinm.2020.100337.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the “RICO” project, BCC Milano, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiziano Barbui.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbui, T., Gavazzi, A., Sciatti, E. et al. Clonal Hematopoiesis in Myeloproliferative Neoplasms Confers a Predisposition to both Thrombosis and Cancer. Curr Hematol Malig Rep 18, 105–112 (2023). https://doi.org/10.1007/s11899-023-00697-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-023-00697-5

Keywords

Navigation