Log in

Perivascular Adipose Tissue and Coronary Atherosclerosis: from Biology to Imaging Phenoty**

  • Evidence-Based Medicine, Clinical Trials and Their Interpretations (L. Roever, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Perivascular adipose tissue (PVAT) has a complex, bidirectional relationship with the vascular wall. In disease states, PVAT secretes pro-inflammatory adipocytokines which may contribute to atherosclerosis. Recent evidence demonstrates that pericoronary adipose tissue (PCAT) may also function as a sensor of coronary inflammation. This review details PVAT biology and its clinical translation to current imaging phenoty**.

Recent Findings

PCAT attenuation derived from routine coronary computed tomography (CT) angiography is a novel noninvasive imaging biomarker of coronary inflammation. Pro-inflammatory cytokines released from the arterial wall diffuse directly into the surrounding PCAT and inhibit adipocyte lipid accumulation in a paracrine manner. This can be detected as an increased PCAT CT attenuation, a metric which associates with high-risk plaque features and independently predicts cardiac mortality. There is also evidence that PCAT attenuation relates to coronary plaque progression and is modified by systemic anti-inflammatory therapies.

Summary

Due to its proximity to the coronary arteries, PCAT has emerged as an important fat depot in cardiovascular research. PCAT CT attenuation has the potential to improve cardiovascular risk stratification, and future clinical studies should examine its role in guiding targeted medical therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. WHO. Disease burden and mortality estimates. 2016.

  2. Cholesterol Treatment Trialists’ C, Baigent C, Blackwell L, Emberson J, Holland LE, Reith C, et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet. 2010;376(9753):1670–81.

    Article  CAS  Google Scholar 

  3. Libby P, Ridker Paul M, Maseri A. Inflammation and atherosclerosis. Circulation. 2002;105(9):1135–43.

    Article  CAS  PubMed  Google Scholar 

  4. Ridker PM. How common is residual inflammatory risk? Circ Res. 2017;120(4):617–9.

    Article  CAS  PubMed  Google Scholar 

  5. •• Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, et al. Antiinflammatory therapy with Canakinumab for atherosclerotic disease. N Engl J Med. 2017;377(12):1119–31 Landmark study validating the inflammatory hypothesis of atherosclerosis.

    Article  CAS  PubMed  Google Scholar 

  6. Britton KA, Fox CS. Perivascular adipose tissue and vascular disease. Clini Lipidol. 2011;6(1):79–91.

    Article  CAS  Google Scholar 

  7. •• Antonopoulos AS, Sanna F, Sabharwal N, Thomas S, Oikonomou EK, Herdman L, et al. Detecting human coronary inflammation by imaging perivascular fat. Sci Transl Med. 2017;9(398) Seminal study linking biopsy-proven coronary inflamamtion to a PCAT CT attenuation, a novel imaging biomarker.

    Article  PubMed  CAS  Google Scholar 

  8. Hubert HB, Feinleib M, McNamara PM, Castelli WP. Obesity as an independent risk factor for cardiovascular disease: a 26-year follow-up of participants in the Framingham Heart Study. Circulation. 1983;67(5):968–77.

    Article  CAS  PubMed  Google Scholar 

  9. Hughes-Austin J, Larsen B, Allison M. Visceral adipose tissue and cardiovascular disease risk 2013.

  10. Fuster JJ, Ouchi N, Gokce N, Walsh K. Obesity-induced changes in adipose tissue microenvironment and their impact on cardiovascular disease. Circ Res. 2016;118(11):1786–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fox CS, Massaro JM, Hoffmann U, Pou KM, Maurovich-Horvat P, Liu CY, et al. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation. 2007;116(1):39–48.

    Article  PubMed  Google Scholar 

  12. Armani A, Mammi C, Marzolla V, Calanchini M, Antelmi A, Rosano G, et al. Cellular models for understanding adipogenesis, adipose dysfunction, and obesity. 2010. 564-72 p.

  13. Ntambi JM, Young-Cheul K. Adipocyte differentiation and gene expression. J Nutr. 2000;130(12):3122s–6s.

    Article  CAS  PubMed  Google Scholar 

  14. Chatterjee TK, Stoll LL, Denning GM, Harrelson A, Blomkalns AL, Idelman G, et al. Proinflammatory phenotype of perivascular adipocytes: influence of high-fat feeding. Circ Res. 2009;104(4):541–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Szasz T, Webb RC. Perivascular adipose tissue: more than just structural support. Clin Sci (London, England : 1979). 2012;122(1):1–12.

    Article  CAS  Google Scholar 

  16. Rajsheker S, Manka D, Blomkalns AL, Chatterjee TK, Stoll LL, Weintraub NL. Crosstalk between perivascular adipose tissue and blood vessels. Curr Opin Pharmacol. 2010;10(2):191–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Thalmann S, Meier CA. Local adipose tissue depots as cardiovascular risk factors. Cardiovasc Res. 2007;75(4):690–701.

    Article  CAS  PubMed  Google Scholar 

  18. Hyvonen MT, Spalding KL. Maintenance of white adipose tissue in man. Int J Biochem Cell Biol. 2014;56:123–32.

    Article  PubMed  CAS  Google Scholar 

  19. Shimizu I, Walsh K. The whitening of brown fat and its implications for weight management in obesity. Curr Obes Rep. 2015;4(2):224–9.

    Article  PubMed  Google Scholar 

  20. de Souza Batista CM, Yang R-Z, Lee M-J, Glynn NM, Yu D-Z, Pray J, et al. Omentin plasma levels and gene expression are decreased in obesity. Diabetes. 2007;56(6):1655.

    Article  PubMed  CAS  Google Scholar 

  21. Park SY, Kim KH, Seo KW, Bae JU, Kim YH, Lee SJ, et al. Resistin derived from diabetic perivascular adipose tissue up-regulates vascular expression of osteopontin via the AP-1 signalling pathway. J Pathol. 2014;232(1):87–97.

    Article  CAS  PubMed  Google Scholar 

  22. Karastergiou K, Mohamed-Ali V. The autocrine and paracrine roles of adipokines. Mol Cell Endocrinol. 2010;318(1-2):69–78.

    Article  CAS  PubMed  Google Scholar 

  23. Sartipy P, Loskutoff DJ. Monocyte chemoattractant protein 1 in obesity and insulin resistance. Proc Natl Acad Sci U S A. 2003;100(12):7265–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest. 2007;117(1):175–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wensveen FM, Valentic S, Sestan M, Turk Wensveen T, Polic B. The “Big Bang” in obese fat: events initiating obesity-induced adipose tissue inflammation. Eur J Immunol. 2015;45(9):2446–56.

    Article  CAS  PubMed  Google Scholar 

  26. Moreno PR, Purushothaman KR, Fuster V, O’Connor WN. Intimomedial interface damage and adventitial inflammation is increased beneath disrupted atherosclerosis in the aorta: implications for plaque vulnerability. Circulation. 2002;105(21):2504–11.

    Article  PubMed  Google Scholar 

  27. Takaoka M, Suzuki H, Shioda S, Sekikawa K, Saito Y, Nagai R, et al. Endovascular injury induces rapid phenotypic changes in perivascular adipose tissue. Arterioscler Thromb Vasc Biol. 2010;30(8):1576–82.

    Article  CAS  PubMed  Google Scholar 

  28. Ohyama K, Matsumoto Y, Amamizu H, Uzuka H, Nishimiya K, Morosawa S, et al. Association of coronary perivascular adipose tissue inflammation and drug-eluting stent–induced coronary hyperconstricting responses in pigs. Arterioscler Thromb Vasc Biol. 2017;37(9):1757–64.

    Article  CAS  PubMed  Google Scholar 

  29. Ruan CC, Zhu DL, Chen QZ, Chen J, Guo SJ, Li XD, et al. Perivascular adipose tissue-derived complement 3 is required for adventitial fibroblast functions and adventitial remodeling in deoxycorticosterone acetate-salt hypertensive rats. Arterioscler Thromb Vasc Biol. 2010;30(12):2568–74.

    Article  CAS  PubMed  Google Scholar 

  30. Galvez-Prieto B, Bolbrinker J, Stucchi P, de Las Heras AI, Merino B, Arribas S, et al. Comparative expression analysis of the renin-angiotensin system components between white and brown perivascular adipose tissue. J Endocrinol. 2008;197(1):55–64.

    Article  CAS  PubMed  Google Scholar 

  31. Antonopoulos AS, Margaritis M, Verheule S, Recalde A, Sanna F, Herdman L, et al. Mutual regulation of epicardial adipose tissue and myocardial redox state by PPAR-gamma/adiponectin signalling. Circ Res. 2016;118(5):842–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. George J, Patal S, Wexler D, Sharabi Y, Peleg E, Kamari Y, et al. Circulating adiponectin concentrations in patients with congestive heart failure. Heart. 2006;92(10):1420–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Antonopoulos Alexios S, Margaritis M, Coutinho P, Digby J, Patel R, Psarros C, et al. Reciprocal effects of systemic inflammation and brain natriuretic peptide on adiponectin biosynthesis in adipose tissue of patients with ischemic heart disease. Arterioscler Thromb Vasc Biol. 2014;34(9):2151–9.

    Article  CAS  PubMed  Google Scholar 

  34. Henrichot E, Juge-Aubry CE, Pernin A, Pache JC, Velebit V, Dayer JM, et al. Production of chemokines by perivascular adipose tissue: a role in the pathogenesis of atherosclerosis? Arterioscler Thromb Vasc Biol. 2005;25(12):2594–9.

    Article  CAS  PubMed  Google Scholar 

  35. Knudson JD, Dick GM, Tune JD. Adipokines and coronary vasomotor dysfunction. Exp Biol Med (Maywood, NJ). 2007;232(6):727–36.

    CAS  Google Scholar 

  36. Weber C, Schober A, Zernecke A. Chemokines: key regulators of mononuclear cell recruitment in atherosclerotic vascular disease. Arterioscler Thromb Vasc Biol. 2004;24(11):1997–2008.

    Article  CAS  PubMed  Google Scholar 

  37. Thorlacius H, Lindbom L, Raud J. Cytokine-induced leukocyte rolling in mouse cremaster muscle arterioles in P-selectin dependent. Am J Phys. 1997;272(4 Pt 2):H1725–9.

    CAS  Google Scholar 

  38. Kwon HM, Sangiorgi G, Ritman EL, Lerman A, McKenna C, Virmani R, et al. Adventitial vasa vasorum in balloon-injured coronary arteries: visualization and quantitation by a microscopic three-dimensional computed tomography technique. J Am Coll Cardiol. 1998;32(7):2072–9.

    Article  CAS  PubMed  Google Scholar 

  39. Verhagen SN, Visseren FL. Perivascular adipose tissue as a cause of atherosclerosis. Atherosclerosis. 2011;214(1):3–10.

    Article  CAS  PubMed  Google Scholar 

  40. Mazurek T, Zhang L, Zalewski A, Mannion JD, Diehl JT, Arafat H, et al. Human epicardial adipose tissue is a source of inflammatory mediators. Circulation. 2003;108(20):2460–6.

    Article  PubMed  Google Scholar 

  41. Baker AR, Silva NF, Quinn DW, Harte AL, Pagano D, Bonser RS, et al. Human epicardial adipose tissue expresses a pathogenic profile of adipocytokines in patients with cardiovascular disease. Cardiovasc Diabetol. 2006;5:1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Kremen J, Dolinkova M, Krajickova J, Blaha J, Anderlova K, Lacinova Z, et al. Increased subcutaneous and epicardial adipose tissue production of proinflammatory cytokines in cardiac surgery patients: possible role in postoperative insulin resistance. J Clin Endocrinol Metab. 2006;91(11):4620–7.

    Article  CAS  PubMed  Google Scholar 

  43. Baker AR, Harte AL, Howell N, Pritlove DC, Ranasinghe AM, da Silva NF, et al. Epicardial adipose tissue as a source of nuclear factor-kappaB and c-Jun N-terminal kinase mediated inflammation in patients with coronary artery disease. J Clin Endocrinol Metab. 2009;94(1):261–7.

    Article  CAS  PubMed  Google Scholar 

  44. Hirata Y, Kurobe H, Akaike M, Chikugo F, Hori T, Bando Y, et al. Enhanced inflammation in epicardial fat in patients with coronary artery disease. Int Heart J. 2011;52(3):139–42.

    Article  CAS  PubMed  Google Scholar 

  45. Konishi M, Sugiyama S, Sato Y, Oshima S, Sugamura K, Nozaki T, et al. Pericardial fat inflammation correlates with coronary artery disease. Atherosclerosis. 2010;213(2):649–55.

    Article  CAS  PubMed  Google Scholar 

  46. Verhagen SN, Vink A, van der Graaf Y, Visseren FL. Coronary perivascular adipose tissue characteristics are related to atherosclerotic plaque size and composition. A post-mortem study. Atherosclerosis. 2012;225(1):99–104.

    Article  CAS  PubMed  Google Scholar 

  47. Öhman MK, Luo W, Wang H, Guo C, Abdallah W, Russo HM, et al. Perivascular visceral adipose tissue induces atherosclerosis in apolipoprotein E deficient mice. Atherosclerosis. 2011;219(1):33–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Manka D, Chatterjee TK, Stoll LL, Basford JE, Konaniah ES, Srinivasan R, et al. Transplanted perivascular adipose tissue accelerates injury-induced neointimal hyperplasia: role of monocyte chemoattractant protein-1. Arterioscler Thromb Vasc Biol. 2014;34(8):1723–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Moe KT, Naylynn TM, Yin NO, Khairunnisa K, Allen JC, Wong MC, et al. Tumor necrosis factor-alpha induces aortic intima-media thickening via perivascular adipose tissue inflammation. J Vasc Res. 2013;50(3):228–37.

    Article  CAS  PubMed  Google Scholar 

  50. Schroeter Marco R, Eschholz N, Herzberg S, Jerchel I, Leifheit-Nestler M, Czepluch Frauke S, et al. Leptin-dependent and leptin-independent paracrine effects of perivascular adipose tissue on neointima formation. Arterioscler Thromb Vasc Biol. 2013;33(5):980–7.

    Article  CAS  PubMed  Google Scholar 

  51. Iacobellis G, Corradi D, Sharma AM. Epicardial adipose tissue: anatomic, biomolecular and clinical relationships with the heart. Nat Clin Pract Cardiovasc Med. 2005;2(10):536–43.

    Article  PubMed  Google Scholar 

  52. Demircelik MB, Yilmaz OC, Gurel OM, Selcoki Y, Atar IA, Bozkurt A, et al. Epicardial adipose tissue and pericoronary fat thickness measured with 64-multidetector computed tomography: potential predictors of the severity of coronary artery disease. Clinics (Sao Paulo, Brazil). 2014;69(6):388–92.

    Article  Google Scholar 

  53. Dey D, Nakazato R, Li D, Berman DS. Epicardial and thoracic fat—noninvasive measurement and clinical implications. Cardiovasc Diagn Ther. 2012;2(2):85–93.

    PubMed  PubMed Central  Google Scholar 

  54. Wheeler GL, Shi R, Beck SR, Langefeld CD, Lenchik L, Wagenknecht LE, et al. Pericardial and visceral adipose tissues measured volumetrically with computed tomography are highly associated in type 2 diabetic families. Investig Radiol. 2005;40(2):97–101.

    Article  Google Scholar 

  55. Ding X, Terzopoulos D, Diaz-Zamudio M, Berman DS, Slomka PJ, Dey D. Automated pericardium delineation and epicardial fat volume quantification from noncontrast CT. Med Phys. 2015;42(9):5015–26.

    Article  PubMed  Google Scholar 

  56. Nerlekar N, Baey Y-W, Brown AJ, Muthalaly RG, Dey D, Tamarappoo B, et al. Poor correlation, reproducibility, and agreement between volumetric versus linear epicardial adipose tissue measurement. JACC Cardiovasc Imaging. 2018;11(7):1035.

    Article  PubMed  PubMed Central  Google Scholar 

  57. • Commandeur F, Goeller M, Betancur J, Cadet S, Doris M, Chen X, et al. Deep learning for quantification of epicardial and thoracic adipose tissue from non-contrast CT. IEEE Trans Med Imaging. 2018;37(8):1835–46 A novel deep-learning approach for quantification of EAT volume.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Rosito GA, Massaro JM, Hoffmann U, Ruberg FL, Mahabadi AA, Vasan RS, et al. Pericardial fat, visceral abdominal fat, cardiovascular disease risk factors, and vascular calcification in a community-based sample: the Framingham Heart Study. Circulation. 2008;117(5):605–13.

    Article  PubMed  Google Scholar 

  59. Goeller M, Achenbach S, Marwan M, Doris MK, Cadet S, Commandeur F, et al. Epicardial adipose tissue density and volume are related to subclinical atherosclerosis, inflammation and major adverse cardiac events in asymptomatic subjects. J Cardiovasc Comput Tomogr. 2018;12(1):67–73.

    Article  PubMed  Google Scholar 

  60. Uygur B, Celik O, Ozturk D, Erturk M, Otcu H, Ustabasioglu FE, et al. The relationship between location-specific epicardial adipose tissue volume and coronary atherosclerotic plaque burden in type 2 diabetic patients. Kardiol Pol. 2017;75(3):204–12.

    Article  PubMed  Google Scholar 

  61. McClain J, Hsu F, Brown E, Burke G, Carr J, Harris T, et al. Pericardial adipose tissue and coronary artery calcification in the Multi-ethnic Study of Atherosclerosis (MESA). Obesity (Silver Spring). 2013;21(5):1056–63.

    Article  Google Scholar 

  62. Mahabadi AA, Lehmann N, Kalsch H, Robens T, Bauer M, Dykun I, et al. Association of epicardial adipose tissue with progression of coronary artery calcification is more pronounced in the early phase of atherosclerosis: results from the Heinz Nixdorf recall study. JACC Cardiovasc Imaging. 2014;7(9):909–16.

    Article  PubMed  Google Scholar 

  63. Mahabadi AA, Massaro JM, Rosito GA, Levy D, Murabito JM, Wolf PA, et al. Association of pericardial fat, intrathoracic fat, and visceral abdominal fat with cardiovascular disease burden: the Framingham Heart Study. Eur Heart J. 2009;30(7):850–6.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Mahabadi AA, Berg MH, Lehmann N, Kalsch H, Bauer M, Kara K, et al. Association of epicardial fat with cardiovascular risk factors and incident myocardial infarction in the general population: the Heinz Nixdorf Recall Study. J Am Coll Cardiol. 2013;61(13):1388–95.

    Article  PubMed  Google Scholar 

  65. Bettencourt N, Toschke AM, Leite D, Rocha J, Carvalho M, Sampaio F, et al. Epicardial adipose tissue is an independent predictor of coronary atherosclerotic burden. Int J Cardiol. 2012;158(1):26–32.

    Article  CAS  PubMed  Google Scholar 

  66. Versteylen MO, Takx RA, Joosen IA, Nelemans PJ, Das M, Crijns HJ, et al. Epicardial adipose tissue volume as a predictor for coronary artery disease in diabetic, impaired fasting glucose, and non-diabetic patients presenting with chest pain. Eur Heart J Cardiovasc Imaging. 2012;13(6):517–23.

    Article  PubMed  Google Scholar 

  67. Ito T, Suzuki Y, Ehara M, Matsuo H, Teramoto T, Terashima M, et al. Impact of epicardial fat volume on coronary artery disease in symptomatic patients with a zero calcium score. Int J Cardiol. 2013;167(6):2852–8.

    Article  PubMed  Google Scholar 

  68. Lu MT, Park J, Ghemigian K, Mayrhofer T, Puchner SB, Liu T, et al. Epicardial and paracardial adipose tissue volume and attenuation—association with high-risk coronary plaque on computed tomographic angiography in the ROMICAT II trial. Atherosclerosis. 2016;251:47–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hell MM, Ding X, Rubeaux M, Slomka P, Gransar H, Terzopoulos D, et al. Epicardial adipose tissue volume but not density is an independent predictor for myocardial ischemia. J Cardiovasc Comput Tomogr. 2016;10(2):141–9.

    Article  PubMed  Google Scholar 

  70. Tamarappoo B, Dey D, Shmilovich H, Nakazato R, Gransar H, Cheng VY, et al. Increased pericardial fat volume measured from noncontrast CT predicts myocardial ischemia by SPECT. JACC Cardiovasc Imaging. 2010;3(11):1104–12.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Mahabadi AA, Reinsch N, Lehmann N, Altenbernd J, Kalsch H, Seibel RM, et al. Association of pericoronary fat volume with atherosclerotic plaque burden in the underlying coronary artery: a segment analysis. Atherosclerosis. 2010;211(1):195–9.

    Article  CAS  PubMed  Google Scholar 

  72. Maurovich-Horvat P, Kallianos K, Engel LC, Szymonifka J, Fox CS, Hoffmann U, et al. Influence of pericoronary adipose tissue on local coronary atherosclerosis as assessed by a novel MDCT volumetric method. Atherosclerosis. 2011;219(1):151–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Marwan M, Hell M, Schuhback A, Gauss S, Bittner D, Pflederer T, et al. CT attenuation of pericoronary adipose tissue in normal versus atherosclerotic coronary segments as defined by intravascular ultrasound. J Comput Assist Tomogr. 2017;41(5):762–7.

    Article  PubMed  Google Scholar 

  74. Balcer B, Dykun I, Schlosser T, Forsting M, Rassaf T, Mahabadi AA. Pericoronary fat volume but not attenuation differentiates culprit lesions in patients with myocardial infarction. Atherosclerosis. 2018;276:182–8.

    Article  CAS  PubMed  Google Scholar 

  75. • Goeller M, Achenbach S, Cadet S, Kwan AC, Commandeur F, Slomka PJ, et al. Pericoronary adipose tissue computed tomography attenuation and high-risk plaque characteristics in acute coronary syndrome compared with stable coronary artery disease. JAMA Cardiol. 2018;3(9):858–63 Demonstrates association of PCAT attenuation with high-risk plaque.

    Article  PubMed  PubMed Central  Google Scholar 

  76. • Kwiecinski J, Dey D, Cadet S, Lee S-E, Otaki Y, Huynh PT, et al. Peri-coronary adipose tissue density is associated with 18F-sodium fluoride coronary uptake in stable patients with high-risk plaques. JACC Cardiovasc Imaging. 2019; Combined assessment of PCAT CT attenuation and 18F-NaF uptake, two novel imaging biomarkers.

  77. •• Oikonomou EK, Marwan M, Desai MY, Mancio J, Alashi A, Hutt Centeno E, et al. Non-invasive detection of coronary inflammation using computed tomography and prediction of residual cardiovascular risk (the CRISP CT study): a post-hoc analysis of prospective outcome data. Lancet. 2018;392(10151):929–39 Progonstic validation of PCAT CT attenuation.

    Article  PubMed  PubMed Central  Google Scholar 

  78. • Goeller M, Tamarappoo BK, Kwan AC, Cadet S, Commandeur F, Razipour A, et al. Relationship between changes in pericoronary adipose tissue attenuation and coronary plaque burden quantified from coronary computed tomography angiography. Eur Heart J Cardiovasc Imaging. 2019;20(6):636–43 Demonstrates the association of PCAT attenuation with coronary plaque progression.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Hassan M, Said K, Rizk H, ElMogy F, Donya M, Houseni M, et al. Segmental peri-coronary epicardial adipose tissue volume and coronary plaque characteristics. Eur Heart J Cardiovasc Imaging. 2016;17(10):1169–77.

    Article  PubMed  Google Scholar 

  80. Hell MM, Achenbach S, Schuhbaeck A, Klinghammer L, May MS, Marwan M. CT-based analysis of pericoronary adipose tissue density: relation to cardiovascular risk factors and epicardial adipose tissue volume. J Cardiovasc Comput Tomogr. 2016;10(1):52–60.

    Article  PubMed  Google Scholar 

  81. Voros S, Rinehart S, Qian Z, Joshi P, Vazquez G, Fischer C, et al. Coronary atherosclerosis imaging by coronary CT angiography: current status, correlation with intravascular interrogation and meta-analysis. J Am Coll Cardiol Img. 2011;4(5):537–48.

    Article  Google Scholar 

  82. Weyer C, Foley JE, Bogardus C, Tataranni PA, Pratley RE. Enlarged subcutaneous abdominal adipocyte size, but not obesity itself, predicts type II diabetes independent of insulin resistance. Diabetologia. 2000;43(12):1498–506.

    Article  CAS  PubMed  Google Scholar 

  83. Apovian CM, Bigornia S, Mott M, Meyers MR, Ulloor J, Gagua M, et al. Adipose macrophage infiltration is associated with insulin resistance and vascular endothelial dysfunction in obese subjects. Arterioscler Thromb Vasc Biol. 2008;28(9):1654–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Farb MG, Ganley-Leal L, Mott M, Liang Y, Ercan B, Widlansky ME, et al. Arteriolar function in visceral adipose tissue is impaired in human obesity. Arterioscler Thromb Vasc Biol. 2012;32(2):467–73.

    Article  CAS  PubMed  Google Scholar 

  85. Gealekman O, Guseva N, Hartigan C, Apotheker S, Gorgoglione M, Gurav K, et al. Depot-specific differences and insufficient subcutaneous adipose tissue angiogenesis in human obesity. Circulation. 2011;123(2):186–94.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Mazurek T, Kochman J, Kobylecka M, Wilimski R, Filipiak KJ, Krolicki L, et al. Inflammatory activity of pericoronary adipose tissue may affect plaque composition in patients with acute coronary syndrome without persistent ST-segment elevation: preliminary results. Kardiol Pol. 2014;72(5):410–6.

    Article  PubMed  Google Scholar 

  87. • Mazurek T, Kobylecka M, Zielenkiewicz M, Kurek A, Kochman J, Filipiak KJ, et al. PET/CT evaluation of (18)F-FDG uptake in pericoronary adipose tissue in patients with stable coronary artery disease: Independent predictor of atherosclerotic lesions’ formation? J Nucl Cardiol. 2017;24(3):1075–84 First non-invasive imaging study to document PCAT inflammation in patients with CAD.

    Article  PubMed  Google Scholar 

  88. Mihl C, Loeffen D, Versteylen MO, Takx RA, Nelemans PJ, Nijssen EC, et al. Automated quantification of epicardial adipose tissue (EAT) in coronary CT angiography; comparison with manual assessment and correlation with coronary artery disease. J Cardiovasc Comput Tomogr. 2014;8(3):215–21.

    Article  PubMed  Google Scholar 

  89. Baba S, Jacene HA, Engles JM, Honda H, Wahl R. CT Hounsfield units of brown adipose tissue increase with activation: preclinical and clinical studies. J Nucl Med. 2010;51:246–50.

    Article  PubMed  Google Scholar 

  90. Franssens BT, Nathoe HM, Leiner T, van der Graaf Y, Visseren FL. Relation between cardiovascular disease risk factors and epicardial adipose tissue density on cardiac computed tomography in patients at high risk of cardiovascular events. Eur J Prev Cardiol. 2017;24(6):660–70.

    Article  PubMed  Google Scholar 

  91. Abazid RM, Smettei OA, Kattea MO, Sayed S, Saqqah H, Widyan AM, et al. Relation between epicardial fat and subclinical atherosclerosis in asymptomatic individuals. J Thorac Imaging. 2017;32(6):378–82.

    Article  PubMed  Google Scholar 

  92. Dey D, Schepis T, Marwan M, Slomka PJ, Berman DS, Achenbach S. Automated three-dimensional quantification of noncalcified coronary plaque from coronary CT angiography: comparison with intravascular US. Radiology. 2010;257(2):516–22.

    Article  PubMed  Google Scholar 

  93. Nakahara T, Dweck MR, Narula N, Pisapia D, Narula J, Strauss HW. Coronary artery calcification: from mechanism to molecular imaging. JACC Cardiovasc Imaging. 2017;10(5):582–93.

    Article  PubMed  Google Scholar 

  94. • Elnabawi YA, Oikonomou EK, Dey AK, Mancio J, Rodante JA, Aksentijevich M, et al. Association of biologic therapy with coronary inflammation in patients with psoriasis as assessed by perivascular fat attenuation indexassociation of biologic therapy with coronary inflammation in psoriasisassociation of biologic therapy with coronary inflammation in psoriasis. JAMA Cardiol. 2019; Demonstrates that PCAT CT attenuation can be modified by anti-inflammatory treatments.

Download references

Funding

Dr Nerlekar is supported by a post-doctoral scholarship from the National Heart Foundation and a Robertson Family Research Fellowship. Dr. Dey is supported in part by a National Heart, Lung, and Blood Institute grant 1R01HL133616.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitesh Nerlekar.

Ethics declarations

Conflict of Interest

Andrew Lin, Damini Dey, Dennis T.L. Wong, and Nitesh Nerlekar declare they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Evidence-Based Medicine, Clinical Trials and Their Interpretations

Appendix

Appendix

Table 2 Search strategy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, A., Dey, D., Wong, D.T.L. et al. Perivascular Adipose Tissue and Coronary Atherosclerosis: from Biology to Imaging Phenoty**. Curr Atheroscler Rep 21, 47 (2019). https://doi.org/10.1007/s11883-019-0817-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11883-019-0817-3

Keywords

Navigation