Log in

Investigation of fractional order inclusion problem with Mittag-Leffler type derivative

  • Published:
Journal of Pseudo-Differential Operators and Applications Aims and scope Submit manuscript

Abstract

Inclusions problems due to differential equations arise in many situations like variational inequalities, projective dynamical systems, and many more. Therefore, the said area has given proper attentions in the last many years. The mentioned area has been extended to fractional order problems recently. The inclusion problems under the usual Caputo and Reimann-Liouville derivatives have been studied in literature very well. Therefore, inspired from the mentioned importance, we investigate a class of fractional order inclusion problems involving Atangana-Baleanu-Caputo derivative under boundary conditions. Our analysis is devoted to develop sufficient conditions for the existence theory of solution by using fixed point theory. For the illustration of our results, we give two suitable examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  2. Lakshmikantham, V., Leela, S., Devi, J.V.: Theory of Fractional Dynamic Systems. Cambridge Scientific Publishers, Cambridge, UK (2009)

    MATH  Google Scholar 

  3. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  4. Diethelm, K.: The Analysis of Fractional Differential Equations, Lecture Notes in Mathematics. Springer-verlag, Berlin, Heidelberg (2010)

  5. Baleanu, D., Machado, J.A.T., Luo, A.C.J.: Fractional Dynamics and Control. Springer, New York (2002)

    Google Scholar 

  6. Deimling, K.: Set-Valued Differential Equations. De Gruyter, Berlin (1992)

    MATH  Google Scholar 

  7. Debnath, L.: Recent applications of fractional calculus to science and engineering. Int. J. Math. Math. Sci. 54, 3413–3442 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Castaing, C., Valadier, M.: Convex Analysis and Measurable Multifunctions; Lecture Notes in Mathematics 580; Springer: Berlin/Heidelberg. Germany, New York, NY, USA (1977)

    Book  Google Scholar 

  9. Górniewicz, L.: Topological Fixed Point Theory of Set-Valued Map**s. Mathematics and Its Applications, Kluwer, Dordrecht, The Netherlands (1999)

    Book  MATH  Google Scholar 

  10. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  11. Magin, R.: Fractional calculus in bioengineering, Critical Rev. Biomed. Eng. 32, 1–104 (2004)

    Google Scholar 

  12. Tarasov, V.E.: Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles. Fields and Media. Springer, New York (2011)

    Google Scholar 

  13. Zhou, Y.: Fractional Evolution Equations and Inclusions: Analysis and Control. Elsevier, Amsterdam (2015)

    Google Scholar 

  14. Caputo, M.: Linear model of dissipation whose \(Q\) is almost frequency independent. II. Geophys. J. Int. 13(5), 529–539 (1967)

    Article  Google Scholar 

  15. Hadamard, J.: Essai sur l’etude des fonctions donnees par leur developpement de Taylor. Journal de Mathematiques Pures et Appliquees. 4(8), 101–186 (1892)

    MATH  Google Scholar 

  16. Katugampola, U.N.: A new approach to generalized fractional derivatives. Bull. Math. Anal. Appl. 6(4), 1–15 (2014)

    MathSciNet  MATH  Google Scholar 

  17. Jarad, F., Abdeljawad, T., Baleanu, D.: Caputo-type modification of the Hadamard fractional derivatives. Adv. Differ. Equ. 2012(142), 8 (2012)

    MathSciNet  MATH  Google Scholar 

  18. Almeida, R.: A Gronwall inequality for a general Caputo fractional operator. ar**v preprint ar**v:1705.10079, (2017)

  19. Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1(2), 73–85 (2015)

    Google Scholar 

  20. Atangana, A., Baleanu, D.: New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. Therm. Sci. 20(2), 763–69 (2016)

    Article  Google Scholar 

  21. Almeida, R.: A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 44, 460–481 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sousa, J.V.C., Oliveira, E.C.D.: On the \(\varphi \)-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simula. 60, 72–91 (2018)

    Article  MathSciNet  Google Scholar 

  23. Abada, N., Benchohra, M., Hammouche, H.: Existence and controllability results for nondensely defined impulsive semilinear functional differential inclusions. J. Diff. Equ. 246(10), 3834–3863 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Abdo, M.S., Abdeljawad, T., Shah, K., Jarad, F.: Study of Impulsive Problems Under Mittag-Leffler Power Law. Heliyon 6(10), e05109 (2020)

    Article  Google Scholar 

  25. Abdo, M.S., Abdeljawad, T., Ali, S.M., Shah, K., Jarad, F.: Existence of positive solutions for weighted fractional order differential equations. Chaos Solitons Fractals 141, 110341 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  26. Abdo, M.S., Ibrahim, A.G., Panchal, S.K.: State-dependent delayed swee** process with a noncompact perturbation in Banach spaces. J. Acta Univer. Apulensis 54(2), 63–74 (2018)

    MATH  Google Scholar 

  27. Abdo, M.S., Ibrahim, A.G., Panchal, S.K.: Noncompact perturbation of nonconvex noncompact swee** process with delay. Comment. Math. Univ. Carolin. 11(2), 1–22 (2020)

    MathSciNet  MATH  Google Scholar 

  28. Lachouri, A., Abdo, M.S., Ardjouni, A., Abdalla, B., Abdeljawad, T.: Hilfer fractional differential inclusions with Erdé lyi-Kober fractional integral boundary condition. Adv. Differ. Equ. 2021, 244 (2021)

    Article  MATH  Google Scholar 

  29. Khan, H., Khan, A., Jarad, F., Shah, A.: Existence and data dependence theorems for solutions of an ABC-fractional order impulsive system. Chaos Solitons Fractals 131, 109477 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  30. Khan, H., Gómez-Aguilar, J.F., Alkhazzan, A., Khan, A.: A fractional order HIV-TB coinfection model with nonsingular Mittag-Leffler Law. Math. Methods. Appl. Sci. 43(6), 3786–3806 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lachouri, A., Abdo, M.S., Ardjouni, A., Abdalla, B., Abdeljawad, T.: On a class of differential inclusions in the frame of generalized Hilfer fractional derivative. AIMS Math. 7(3), 3477–3493 (2022)

    Article  MathSciNet  Google Scholar 

  32. Wang, J., Ibrahim, A.G., O’Regan, D., Zhou, Y.: Controllability for noninstantaneous impulsive semilinear functional differential inclusions without compactness. Indagationes Math. 29(5), 1362–1392 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  33. Abdo, M.S., Panchal, S.: Fractional integro-differential equations involving \(\varphi \)-Hilfer fractional derivative. Adv. Appl. Math. Mech. 11, 1–22 (2019)

    MathSciNet  Google Scholar 

  34. Ali, A., Shah, K., Jarad, F., Gupta, V., Abdeljawad, T.: Existence and stability analysis to a coupled system of implicit type impulsive boundary value problems of fractional-order differential equations. Adv. Differ. Equ. 2019(1), 101 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  35. Jarad, F., Ug̃urlu, E., Abdeljawad, T., Baleanu, D.: On a new class of fractional operators. Adv. Differ. Equ. 247(1) (2017)

  36. Hajiseyedazizi, S.N., Samei, M.E., Alzabut, J., Chu, Y.M.: On multi-step methods for singular fractional q-integro-differential equations. Open Math. 19(1), 1378–1405 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lachouri, A., Ardjouni, A., Djoudi, A.: Existence results for nonlinear sequential caputo and caputo-hadamard fractional differential inclusions with three-point boundary conditions. Math. Eng. Sci. Aerospace 12(1), 163–179 (2021)

    MATH  Google Scholar 

  38. Lachouri, A., Ardjouni, A., Djoudi, A.: Investigation of the existence and uniqueness of solutions for higher order fractional differential inclusions and equations with integral boundary conditions. J. Interdiscip. Math. 24(8), 2161–2179 (2021)

    Article  MATH  Google Scholar 

  39. Wongcharoen, A., Ntouyas, S.K., Tariboon, J.: Boundary value problems for Hilfer fractional differential inclusions with nonlocal integral boundary conditions. Mathematics 8(11), 1905 (2020)

    Article  MATH  Google Scholar 

  40. Shabbir, S., Shah, K., Abdeljawad, T.: Stability analysis for a class of implicit fractional differential equations involving Atangana-Baleanu fractional derivative. Adv. Differ. Equ. 2021(1), 1–16 (2021)

    MathSciNet  MATH  Google Scholar 

  41. Abdeljawad, T.: A Lyapunov type inequality for fractional operators with nonsingular Mittag-Leffler kernel. J. Inequal. Appl. 130, 1–11 (2017)

    MathSciNet  MATH  Google Scholar 

  42. Covitz, H., Nadler, S.B., Jr.: Multivalued contraction map**s in generalized metric spaces. Israel J. Math. 8, 5–11 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  43. Granas, A., Dugundji, J.: Fixed Point Theory. Springer, New York (2005)

  44. Hu, S., Papageorgiou, N.: Handbook of Multivalued Analysis, Vol I: Theory, Kluwer, Dordrecht (1997)

  45. Kisielewicz, M.: Differential Inclusions and Optimal Control. Kluwer, Dordrecht, The Netherlands (1991)

    MATH  Google Scholar 

  46. Lasota, A., Opial, Z.: An application of the Kakutani–Ky Fan theorem in the theory of ordinary differential equations. Bull. Acad. Pol. Sci. Ser. Sci. math. Astron. Phys. 13, 781–786 (1965)

Download references

Acknowledgements

“The authors Kamal Shah, and Thabet Abdeljawad would like to thank Prince Sultan University for the support through the TAS research lab".

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thabet Abdeljawad.

Ethics declarations

Conflict of interest

There is no competing interest regarding this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lachouri, A., Abdo, M.S., Ardjouni, A. et al. Investigation of fractional order inclusion problem with Mittag-Leffler type derivative. J. Pseudo-Differ. Oper. Appl. 14, 43 (2023). https://doi.org/10.1007/s11868-023-00537-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11868-023-00537-3

Keywords

Navigation