Log in

An effective local-global principle and additive combinatorics in finite fields

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

We use recent results about linking the number of zeros on algebraic varieties over ℂ, defined by polynomials with integer coefficients, and on their reductions modulo sufficiently large primes to study congruences with products and reciprocals of linear forms. This allows us to make some progress towards a question of B. Murphy, G. Petridis, O. Roche-Newton, M. Rudnev and I. D. Shkredov (2019) on an extreme case of the Erdős–Szemerédi conjecture in finite fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Bombieri, J. Bourgain and S. V. Konyagin, Roots of polynomials in subgroups of \(\mathbb{F}_p^ {\ast} \) and applications to congruences, Int. Math. Res. Not. IMRN 2009 (2009), 802–834.

    Google Scholar 

  2. J. Bourgain, M. Z. Garaev, S. V. Konyagin and I. E. Shparlinski, On the hidden shifted power problem, SIAM J. Comput. 41 (2012), 1524–1557.

    Article  MathSciNet  Google Scholar 

  3. M.-C. Chang, Factorization in generalized arithmetic progressions and applications to the Erdős–Szemerédi sum-product problem, Geom. Funct. Anal. 13 (2003), 720–736.

    Article  MathSciNet  Google Scholar 

  4. M.-C. Chang, C. D’Andrea, A. Ostafe, I. E. Shparlinski and M. Sombra, Orbits of polynomial dynamical systems modulo primes, Proc. Amer. Math. Soc. 146 (2018), 2015–2025.

    Article  MathSciNet  Google Scholar 

  5. M. Chang, B. Kerr, I. Shparlinski and U. Zannier, Elements of large order on varieties over prime finite fields, J. Théor. Nombres Bordeaux 26 (2014), 579–594.

    Article  MathSciNet  Google Scholar 

  6. K. Cwalina and T. Schoen, A linear bound on the dimension in Green-Ruzsa’s theorem, J. Number Theory 133 (2013) 1262–1269.

    Article  MathSciNet  Google Scholar 

  7. C. D’Andrea, A. Ostafe, I. Shparlinski and M. Sombra, Reductions modulo primes of systems of polynomial equations and algebraic dynamical systems, Trans. Amer. Math. Soc. 371 (2019), 1169–1198.

    Article  MathSciNet  Google Scholar 

  8. G. Elekes and I. Z. Ruzsa, Few sums, many products, Studia Sci. Math. Hungar. 40, (2003), 301–308.

    MathSciNet  Google Scholar 

  9. G. A. Freiman, On the addition of finite sets, Dokl. Akad. Nauk SSSR 158 (1964), 1038–1041; English translation: Sov. Math., Dokl. 5 (1964), 1366–1370.

    MathSciNet  Google Scholar 

  10. C. Grosu, \({\mathbb{F}_p}\) is locally like ℂ, J. London Math. Soc. (2) 89 (2014), 724–744.

    Article  MathSciNet  Google Scholar 

  11. M. Grötschel, L. Lovász and A. Schrijver, Geometric Algorithms and Combinatorial Optimization, Springer, Berlin, 1993.

    Book  Google Scholar 

  12. D. R. Heath-Brown, The density of rational points on curves and surfaces, Ann. of Math. (2) 155 (2002), 553–595.

    Article  MathSciNet  Google Scholar 

  13. S. V. Konyagin, S. V. Makarychev, I. E. Shparlinski and I. V. Vyugin, On the structure of graphs of Markoff triples, Q. J. Math 71 (2020), 637–648.

    Article  MathSciNet  Google Scholar 

  14. A. Mohammadi, T. Pham and A. Warren, A point-conic incidence bound and applications over \({\mathbb{F}_p}\), European J. Combin. 107 (2023), Article no. 103596.

  15. B. Murphy, G. Petridis, O. Roche-Newton, M. Rudnev and I. D. Shkredov, New results on sum-product type growth over fields, Mathematika 65 (2019), 588–642.

    Article  MathSciNet  Google Scholar 

  16. I. D. Shkredov, Modular hyperbolas and bilinear forms of Kloosterman sums, J. Number Theory 220 (2021) 182–211.

    Article  MathSciNet  Google Scholar 

  17. I. E. Shparlinski, Orders of points in families of elliptic curves, Proc. Amer. Math. Soc. 148 (2020), 2371–2377.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Giorgis Petridis for pointing out that Theorem 2.2 is a finite field analogue of a result of Elekes and Ruzsa [8]. The authors are also grateful to Misha Rudnev for many useful comments and queries, which helped to discover a gap in the initial version.

During this work, B. K. was supported by Australian Research Council Grant DP160100932, Academy of Finland Grant 319180 and the Max Planck Institute for Mathematics, J. M. was supported by Australian Research Council Grant DP180100201, by NSERC and by the Max Planck Institute for Mathematics, and I. S. was supported by Australian Research Council Grants DP170100786 and DP180100201.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryce Kerr.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kerr, B., Mello, J. & Shparlinski, I.E. An effective local-global principle and additive combinatorics in finite fields. JAMA 152, 109–135 (2024). https://doi.org/10.1007/s11854-023-0291-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-023-0291-2

Navigation