Log in

Inhibiting the Accretion in the Coal-Fired Rotary Kiln of High-Silica Iron Ore Pellets Application by Reducing Fines Generation and Liquid Phase Formation

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The issue of ring formation in rotary kilns poses a significant obstacle to the efficient and cost-effective production of oxide pellets. This study focuses on sampling and analyzing deposit formation at various points along the longitudinal axis of a 40-m-long, high-silica, pellet coal-fired rotary kiln. The primary factors influencing deposit formation in the kiln are fines generation and liquid phase formation. Through laboratory experiments and utilization of the "FactSage" calculation system, measures to reduce fines generation and inhibit liquid phase formation are analyzed, thereby establishing a foundation for mitigating deposit-forming speed in rotary kilns and increasing pellet production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J. Zhao, H.B. Zuo, Y. Wang, J.S. Wang, and Q.G. Xue, Ironmak. Steelmak. 47, 296 (2020).

    Article  Google Scholar 

  2. K.K. Bai, L.C. Liu, Y.Z. Pan, H.B. Zuo, J.S. Wang, and Q.G. Xue, Ironmak. Steelmak. 48, 1048 (2021).

    Article  Google Scholar 

  3. X.H. Fan, M. Gan, L.S. Yuan, G.H. Li, T. Jiang, and J.M. Zhuang, Iron and Steel. 43, 15 (2008).

    Google Scholar 

  4. S. Wang, Y.F. Guo, J.J. Fan, F. Chen, Z. Yang, Y.J. Liu, and L.Z. Yang, Ceram. Int. 48, 12014 (2022).

    Article  Google Scholar 

  5. S. Wang, Y.F. Guo, J.J. Fan, Y. He, T. Jiang, F. Chen, F.Q. Zheng, and L.Z. Yang, Fuel Process. Technol. 175, 54 (2018).

    Article  Google Scholar 

  6. D. Ramanenka, M. Antti, G. Gustafsson, and P. Jonsén, Eng. Fail. Anal. 79, 852 (2017).

    Article  Google Scholar 

  7. D. Ramanenka, G. Gustafsson, and P. Jonsén, Eng. Fail. Anal. 105, 98 (2019).

    Article  Google Scholar 

  8. H. Sefidari, C. Ma, C. Fredriksson, B. Lindblom, H. Wiinikka, L.O. Nordin, G. Wu, E. Yazhenskikh, M. Müller, and M. Öhman, Fuel Process. Technol. 199, 106254 (2020).

    Article  Google Scholar 

  9. H. Sefidari, H. Wiinikka, B. Lindblom, L.O. Nordin, G. Wu, E. Yazhenskikh, M. Müller, C. Ma, and M. Öhman, Fuel Process. Technol. 193, 244 (2019).

    Article  Google Scholar 

  10. S. Wang, Y.F. Guo, J.J. Fan, F. Chen, L.Z. Yang, Z. Yang, K. Liu, and Y.J. Liu, Powder Technol. 404, 117475 (2022).

    Article  Google Scholar 

  11. S. Wang, Y.F. Guo, J.J. Fan, Z. Yang, F. Chen, L.Z. Yang, and Y.J. Liu, Powder Technol. 404, 117454 (2022).

    Article  Google Scholar 

  12. G.P. Liu, N. Li, W. Yan, C.H. Gao, W. Zhou, and Y.Y. Li, Ceram. Int. 40, 8149 (2014).

    Article  Google Scholar 

  13. J.H. Chen, M.W. Yan, J.D. Su, B. Li, and J.L. Sun, Ceram. Int. 42, 569 (2016).

    Article  Google Scholar 

  14. S. Wang, Y.F. Guo, F. Chen, Y. He, T. Jiang, and F.Q. Zheng, Energ. Fuel. 30, 6123 (2016).

    Article  Google Scholar 

  15. J.C. Van Dyk, S.A. Benson, M.L. Laumb, and B. Waanders, Fuel 88, 1057 (2009).

    Article  Google Scholar 

  16. Y.Z. Wang, J. Schenk, J.L. Zhang, Z.J. Liu, J. Wang, L.L. Niu, and Q. Cheng, Powder Technol. 362, 517 (2020).

    Article  Google Scholar 

  17. J. Pan, H.Y. Tian, D.Q. Zhu, Z.Q. Guo, C.C. Yang, and X.L. Zhou, Iron and Steel. 55, 13 (2020).

    Google Scholar 

  18. S. Wang, Y.F. Guo, J. Fan, T. Jiang, F. Chen, F.Q. Zheng, and L.Z. Yang, Powder Technol. 333, 122 (2018).

    Article  Google Scholar 

  19. Y.F. Guo, S. Wang, Y. He, T. Jiang, F. Chen, and F.Q. Zheng, Fuel Process. Technol. 161, 33 (2017).

    Article  Google Scholar 

  20. X.H. Fan, J. Li, X.L. Chen, Y. Wang, and M. Gan, J. Iron. Steel Res. Int. 20, 16 (2013).

    Article  Google Scholar 

  21. J. Stjernberg, B. Lindblom, J. Wikström, M.L. Antti, and M. Odén, Ceram. Int. 36, 733 (2010).

    Article  Google Scholar 

  22. S.D. Tian, Y.Q. Zhuo, and C.H. Chen, Energ. Fuel. 25, 4896 (2011).

    Article  Google Scholar 

  23. Y. Wang, X.H. Fan, and X.L. Chen, ISIJ Int. 53, 399 (2013).

    Article  Google Scholar 

  24. L.Y. Yi, N. Zhang, Z.K. Liang, L. Wang, H.R. **ao, and Z.C. Huang, Fuel 310, 122342 (2022).

    Article  Google Scholar 

  25. J.G. Lu, C.C. Lan, Q. Lyu, S.H. Zhang, and J.N. Sun, INT J MIN MET MATER. 28, 629 (2021).

    Article  Google Scholar 

  26. R. Bandyopadhyay, S. Gupta, B. Lindblom, S. Jonsson, D. French, and V. Sahajwalla, Fuel 135, 301 (2014).

    Article  Google Scholar 

  27. C.W. Bale, P. Chartrand, S.A. Decterov, G. Eriksson, K. Hack, B.R. Mahfoud, J. Melançon, A.D. Pelton, and S. Petersen, Calphad 26, 189 (2002).

    Article  Google Scholar 

  28. C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, A.E. Gheribi, K. Hack, I.H. Jung, Y.B. Kang, J. Melançon, A.D. Pelton, S. Petersen, C. Robelin, J. Sangster, P. Spencer, and M.A. Van Ende, Calphad 54, 35 (2016).

    Article  Google Scholar 

  29. C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, K. Hack, I.H. Jung, Y.B. Kang, J. Melançon, A.D. Pelton, C. Robelin, and S. Petersen, Calphad 33, 295 (2009).

    Article  Google Scholar 

  30. Q. Zhong, Y.B. Yang, T. Jiang, Q. Li, and B. Xu, Powder Technol. 323, 195 (2018).

    Article  Google Scholar 

  31. Z.X. Zhang, X.J. Wu, T. Zhou, Y.S. Chen, N.P. Hou, G.L. Piao, N. Kobayashi, Y. Itaya, and S. Mori, Combust. Inst. 33, 2853 (2011).

    Article  Google Scholar 

  32. D. Bäckström, R. Johansson, K. Andersson, H. Wiinikka, and C. Fredriksson, Fuel Process. Technol. 138, 210 (2015).

    Article  Google Scholar 

  33. Y.Z. Wang, J.L. Zhang, and Z.J. Liu, Powder Technol. 356, 73 (2019).

    Article  Google Scholar 

  34. Q. Zhong, Y.B. Yang, T. Jiang, Q. Li, and B. Xu, Powder Technol. 323, 195 (2018).

    Article  Google Scholar 

Download references

Acknowledgement

The authors acknowledge the financial support of the National Natural Science Foundation of China (52174291), the National Natural Science Foundation of China Youth Fund (52204335), and the Bei**g New-Star of Science and Technology (Z211100002121115).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yaozu Wang or Zhengjian Liu.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, L., Zhang, J., Jiang, H. et al. Inhibiting the Accretion in the Coal-Fired Rotary Kiln of High-Silica Iron Ore Pellets Application by Reducing Fines Generation and Liquid Phase Formation. JOM (2024). https://doi.org/10.1007/s11837-024-06616-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11837-024-06616-0

Navigation