Log in

Characterization and Optimization of Copper-Cobalt Oxide Ores During Acid Leaching

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The copper-cobalt ore received from Congo contains around 2.0% copper and 0.356% cobalt, with oxidation rates of 92.09% and 88.57% for Cu and Co, respectively. Malachite and cornetite are the main copper minerals, while heterogenite and carrollite are the main Co-bearing minerals. To optimize the leaching efficiency of Cu and Co for this type of ore, various operating parameters were investigated, including particle size, pulp density, acidity, leaching time, and reductant. The recovery for Cu and Co can reach 88.36% and 74.58% under pulp density of 33%, acidity of 84 kg/t, leaching time of 4 h, and reductant 12 kg/t. In order to improve the metal recovery, an intensified operating condition (fine grinding, high acidity, and reductant) was applied, and the copper and Co recovery reached 93.07% and 89.56%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. F.K. Crundwell, N.B. Du Preez, and B.D.H. Knights, Miner. Eng 156, 106450 (2020).

    Article  Google Scholar 

  2. C. Klauber, Int. J. Miner. Process 86(1–4), 1 (2008).

    Article  Google Scholar 

  3. H. Zhao, X. Huang, J. Wang, Y. Li, R. Liao, X. Wang, X. Qiu, Y. **ong, W. Qin, and G. Qiu, Miner. Eng 109, 153 (2017).

    Article  Google Scholar 

  4. H. Zhao, J. Wang, W. Qin, M. Hu, S. Zhu, and G. Qiu, Miner. Eng. 71, 159 (2015).

    Article  Google Scholar 

  5. P.T. Ntakamutshi, M.B. Kime, M.E. Mwema, B.R. Ngenda, and T.A. Kaniki, Miner. Eng. 111, 47 (2017).

    Article  Google Scholar 

  6. M. Niinae, N. Komatsu, Y. Nakahiro, T. Wakamatsu, and J. Shibata, Hydrometallurgy 40(1–2), 111 (1996).

    Article  Google Scholar 

  7. M.S. Safarzadeh, N. Dhawan, M. Birinci, and D. Moradkhani, Hydrometallurgy 106(1–2), 51 (2011).

    Article  Google Scholar 

  8. M.L. Shengo, M.B. Kime, M.P. Mambwe, and T.K. Nyembo, J. Sustain. Min. 18(4), 226 (2019).

    Article  Google Scholar 

  9. M. Saldaña, E. Gálvez, P. Robles, J. Castillo, and N. Toro, Materials 15(5), 1757 (2022).

    Article  Google Scholar 

  10. L. Sinclair, and J. Thompson, Hydrometallurgy 157, 306 (2015).

    Article  Google Scholar 

  11. L. Wang, S. Yin, and A. Wu, J. Clean. Prod 279, 123705 (2021).

    Article  Google Scholar 

  12. B. Ma, C. Wang, W. Yang, F. Yin, and Y. Chen, Miner. Eng. 50, 106 (2013).

    Article  Google Scholar 

  13. L. Santoro, S. Tshipeng, E. Pirard, H. Bouzahzah, A. Kaniki, and R. Herrington, Miner. Eng. 137, 277 (2019).

    Article  Google Scholar 

  14. S. Canepari, C. Perrino, F. Olivieri, and M.L. Astolfi, Atmos. Environ. 42(35), 8161 (2008).

    Article  Google Scholar 

  15. Y. Wang, K. Jiang, H. Ma, S. Qin, and C. Zheng, Mining. Metall. Explor. 39(2), 847 (2022).

    Google Scholar 

  16. G. Shi, Y. Liao, B. Su, Y. Zhang, W. Wang, and J. **, Sep. Purif. Technol. 241, 116699 (2020).

    Article  Google Scholar 

  17. C. Zheng, K. Jiang, Z. Cao, H. Wang, S. Liu, K.E. Waters, and H. Ma, Sep. Purif. Technol. 309, 123010 (2023).

    Article  Google Scholar 

  18. P. Dai, T. Yan, L. Hu, Z. Pang, Z. Bao, M. Wu, G. Li, J. Fang, and Z. Peng, J. Mater. Chem. A 5(36), 19203 (2017).

    Article  Google Scholar 

  19. M. Bajdich, M. García-Mota, A. Vojvodic, J.K. Nørskov, and A.T. Bell, J. Am. Chem. Soc. 135(36), 13521 (2013).

    Article  Google Scholar 

  20. X. Hu, S. Zhang, J. Sun, L. Yu, X. Qian, R. Hu, Y. Wang, H. Zhao, and J. Zhu, Nano Energy 56, 109 (2019).

    Article  Google Scholar 

  21. M.M. Walczak, D.A. Dryer, D.D. Jacobson, M.G. Foss, and N.T. Flynn, J. Chem. Educ. 74(10), 1195 (1997).

    Article  Google Scholar 

  22. H. Ma, K.E. Waters, and H. Wang, Mining. Metall. Explor. 40(1), 13 (2023).

    Google Scholar 

Download references

Acknowledgements

The Ministry of Science and Technology of China provides the support through National Key Research and Development Program (2022YFC3902005). The support from China Minmetals Corporation (2021ZXD01) was also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Ma.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Qin, S., Zheng, C. et al. Characterization and Optimization of Copper-Cobalt Oxide Ores During Acid Leaching. JOM 75, 5785–5795 (2023). https://doi.org/10.1007/s11837-023-06151-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06151-4

Navigation