Log in

Simulation of Centimeter-Level Particle Motion Behavior in the Ruhrstahl–Heraeus Reactor Based on Situ Formation Micro-phase Molten Steel Purification Technology

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In situ formation micro-phase molten steel purification technology is a new inclusions control technology. In this study, to increase the purification efficiency of the composite particles in the Ruhrstahl–Heraeus (RH) reactor, a water model was used to simulate the addition process of the spherical particles. The effects of gas flow rate and immersion depth on particle motion behavior were carefully investigated. The settling process of the particles in the reactor was further analyzed with kinetic theory. Industrial trials in a 180-t RH were also conducted to validate the effect of the composite particle treatment on steel quality. The results show that the small-size particles disperse more in the liquid steel. The gas flow rate is positively correlated with the settling displacement in this experimental range. The optimal gas flow rate is 4.1 m3 h−1, and the optimal immersion depth increases with increasing particle size. The results of the industrial trials also show that the quality of the steel treated with composite particles is significantly improved. The T·[O] content was reduced by 8.78 ppm. The inclusions number density was reduced by 3.55 pieces/mm2. The percentage of inclusions smaller than 3 μm was increased from 27.02% to 73.96%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S.F. Chen, H. Lei, H.C. Hou, C.Y. Ding, H. Zhang, and Y. Zhao, J. Mater. Res. Technol. 15, 5141 (2021).

    Article  Google Scholar 

  2. H. Wang, Y.P. Bao, J.G. Zhi, C.Y. Duan, S. Gao, and M. Wang, ISIJ Int. 61, 657 (2021).

    Article  Google Scholar 

  3. B.S. Liu, G.S. Zhu, H.X. Li, B.H. Li, and A.M. Cui, Int. J. Min. Met. Mater. 17, 22 (2010).

    Article  Google Scholar 

  4. X.G. Ai, Y.P. Bao, W. Jiang, J.H. Liu, P.H. Li, and T.Q. Li, Int. J. Min. Met. Mater. 17, 17 (2010).

    Article  Google Scholar 

  5. F. Jiang, and G.G. Cheng, Ironmak. Steelmak. 39, 386 (2012).

    Article  Google Scholar 

  6. Y.H. Li, Y.P. Bao, R. Wang, L.F. Ma, and J.S. Liu, Int. J. Min. Met. Mater. 25, 153 (2018).

    Article  Google Scholar 

  7. F.P. Tang, Z. Li, X.F. Wang, B.W. Chen, and P. Fei, Int. J. Min. Met. Mater. 18, 144 (2011).

    Article  Google Scholar 

  8. F.P. Tang, X.F. Wang, Z. Li, Y. Lin, B.W. Chen, and P. Fei, Ironmak. Steelmak. 38, 285 (2011).

    Article  Google Scholar 

  9. L. Wang, H.G. Lee, and P. Hayes, ISIJ Int. 36, 7 (1996).

    Article  Google Scholar 

  10. S. Chang, Z. Zou, B. Li, M. Isac, and R.I. Guthrie, Metall. Mater. Trans. B. 53, 526 (2022).

    Article  Google Scholar 

  11. R. Guthrie, and M. Isac, In Extraction. 729, 1 (2018).

    Google Scholar 

  12. S. Chang, X. Cao, C.H. Hsin, Z. Zou, M. Isac, and R. Guthrie, ISIJ Int. 56, 1188 (2016).

    Article  Google Scholar 

  13. L. Wang, S. Yang, J. Li, S. Zhang, and J. Ju, Metall. Mater. Trans. B. 48, 805 (2017).

    Article  Google Scholar 

  14. Y. **ao, G. Wang, H. Lei, and S. Sridhar, J. Alloy Compd. 813, 1543 (2020).

    Google Scholar 

  15. B. Zhu, K. Chattopadhyay, X. Hu, B. Zhang, Q. Liu, and Z. Chen, Vacuum 152, 30 (2018).

    Article  Google Scholar 

  16. X. Li, X. Wang, Y.P. Bao, J. Gong, and M. Wang, JOM. 72, 3628 (2020).

    Article  Google Scholar 

  17. J. Dong, C. Feng, R. Zhu, G. Wei, J. Jiang, and S. Chen, Metall. Mater. Trans. B. 52, 2127 (2021).

    Article  Google Scholar 

  18. C. Yao, M. Wang, Y.J. Ni, J. Gong, L.D. **ng, H.B. Zhang, and Y.P. Bao, JOM. 1, 1 (2022).

    Google Scholar 

  19. R.D. Wang, Y. **, and H. Cui, Metall. Mater. Trans. B. 53, 342 (2022).

    Article  Google Scholar 

  20. J.J.M. Peixoto, W.V. Gabriel, T.A.S. de Oliveira, C.A. da Silva, I.A. da Silva, and V. Seshadri, Metall. Mater. Trans B. 49, 2421 (2018).

    Article  Google Scholar 

  21. W.B. Rauen, B. Lin, R.A. Falconer, and E.C. Teixeira, Chem. Eng. J. 137, 550 (2008).

    Article  Google Scholar 

  22. C.A. Da Silva, I.A. Da Silva, E.M. de Castro Martins, V. Seshadri, C.A. Perim and G.A. Vargas Filho, Ironmak Steelmak. 31, 37 (2004).

  23. B. Dahya, and M.E. Weber, J. Fluid Mech. 105, 61 (1981).

    Article  Google Scholar 

  24. F.P. Tang, Z. Li, X.F. Wang, W.S. Liu, and B.W. Chen, Iron Steel. 45, 28 (2010).

    Google Scholar 

  25. A.N. Ernest, J.S. Bonner, and R.L. Autenrieth, J. Environ. Eng. 121, 320 (1995).

    Article  Google Scholar 

  26. M.E. ONeill, Chem Eng Sci. 23, 1293 (1968).

    Article  Google Scholar 

  27. S. Taniguchi, ISIJ Int. 36, 117 (1999).

    Article  Google Scholar 

  28. H. Matsuno, CAMP. 10, 103 (1997).

    Google Scholar 

  29. D.Y. Liu, Bei**g: Higher Education Press. (1993).

  30. S.H. Huang, W. Li, and L.J. Cheng, Appl. Math. Mech. 21, 265 (2000).

    Article  Google Scholar 

  31. C.Y. Dong, W.L. Luan, S.T. Zhou, and Q. Zhang, J. China Univ. Pet. (Ed. Nat. Sci.). 31, 55 (2007).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51574019). The authors wish to express their gratitude to the foundation for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-** Bao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Bao, Yp., Gu, C. et al. Simulation of Centimeter-Level Particle Motion Behavior in the Ruhrstahl–Heraeus Reactor Based on Situ Formation Micro-phase Molten Steel Purification Technology. JOM 75, 3724–3733 (2023). https://doi.org/10.1007/s11837-023-05943-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05943-y

Navigation